Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Brigitte Chabbert is active.

Publication


Featured researches published by Brigitte Chabbert.


Bioresource Technology | 2010

Effect of harvesting date on the composition and saccharification of Miscanthus x giganteus.

T. Le Ngoc Huyen; Caroline Rémond; R.M. Dheilly; Brigitte Chabbert

The chemical composition of the whole aerial biomass and isolated organs of Miscanthus x giganteus was examined for saccharification into fermentable sugars at early and late harvesting dates. Delayed harvest was mainly related to increased amounts of cell wall and ester-linked phenolic acids. Addition of an enzyme cocktail (cellulases, beta-glucosidase and xylanase) resulted in similar enzyme digestibilities at the two harvesting dates, ranging from 11-13% and 8-9% of the cellulose and arabinoxylan, respectively. However, the internodes, leaves and sheaths varied in cell wall content and composition and gave rise to different saccharification yields with internodes being the most recalcitrant organs. Non-cell wall fraction was estimated as the amount of material extracted by neutral detergent solution, and accounted for 23% of the whole aerial biomass harvested at an early date. However, saccharification yields from the miscanthus biomass did not change after soluble fraction removal. An ammonia pretreatment improved enzyme efficiency on early-harvested miscanthus, to a greater extent than on late-harvested biomass. This trend was confirmed for two different years of harvesting.


Biogeochemistry | 2014

Impact of fine litter chemistry on lignocellulolytic enzyme efficiency during decomposition of maize leaf and root in soil

Bilal Ahmad Zafar Amin; Brigitte Chabbert; Daryl L. Moorhead; Isabelle Bertrand

Residue recalcitrance controls decomposition and soil organic matter turnover. We hypothesized that the complexity of the cell wall network regulates enzyme production, activity and access to polysaccharides. Enzyme efficiency, defined as the relationship between cumulative litter decomposition and enzyme activities over time, was used to relate these concepts. The impact of two contrasting types of cell walls on xylanase, cellulase and laccase efficiencies was assessed in relation to the corresponding changes in residue chemical composition (xylan, glucan, lignin) during a 43-day incubation period. The selected residues were maize roots, which are rich in secondary cell walls that contain lignin and covalent bridges between heteroxylans and lignin, and maize leaves having mostly non-lignified primary cell walls thus making the cellulose and hemicelluloses less resistant to enzymes. Relationships between C mineralization and change in residue quality through decomposition indicated that the level of substitution of arabinoxylans (arabinan to xylan ratio) provides a good explanation of the decomposition process. In leaves enriched in primary cell walls, arabinose substitution of xylan controlled C mineralization rate but hampered polysaccharide decomposition, but to a lesser extent than in roots in which arabinoxylans were mostly cross-linked with lignin. Enzyme activity was higher in leaf than root amended soils while enzyme efficiency was systematically higher in the presence of roots. This apparent paradox suggests that residue quality could preselect the microbial community. Indeed, we found that microorganisms exhibited an initial rapid growth in the presence of a high quality litter and produced enzymes that are not efficient in degrading recalcitrant cell walls while, in the presence of the more recalcitrant maize roots, microbial biomass grew more slowly but produced enzymes of higher efficiency. This high enzyme efficiency could be explained by the synergistic action of hydrolytic and oxidative enzymes even in the early stage of decomposition.


Gcb Bioenergy | 2014

Implications of productivity and nutrient requirements on greenhouse gas balance of annual and perennial bioenergy crops

Stéphane Cadoux; Fabien Ferchaud; Charlotte Demay; Hubert Boizard; Jean-Marie Machet; Emilie Fourdinier; Matthieu Preudhomme; Brigitte Chabbert; Ghislain Gosse; Bruno Mary

Biomass from dedicated crops is expected to contribute significantly to the replacement of fossil resources. However, sustainable bioenergy cropping systems must provide high biomass production and low environmental impacts. This study aimed at quantifying biomass production, nutrient removal, expected ethanol production, and greenhouse gas (GHG) balance of six bioenergy crops: Miscanthus × giganteus, switchgrass, fescue, alfalfa, triticale, and fiber sorghum. Biomass production and N, P, K balances (input‐output) were measured during 4 years in a long‐term experiment, which included two nitrogen fertilization treatments. These results were used to calculate a posteriori ‘optimized’ fertilization practices, which would ensure a sustainable production with a nil balance of nutrients. A modified version of the cost/benefit approach proposed by Crutzen et al. (2008), comparing the GHG emissions resulting from N‐P‐K fertilization of bioenergy crops and the GHG emissions saved by replacing fossil fuel, was applied to these ‘optimized’ situations. Biomass production varied among crops between 10.0 (fescue) and 26.9 t DM ha−1 yr−1 (miscanthus harvested early) and the expected ethanol production between 1.3 (alfalfa) and 6.1 t ha−1 yr−1 (miscanthus harvested early). The cost/benefit ratio ranged from 0.10 (miscanthus harvested late) to 0.71 (fescue); it was closely correlated with the N/C ratio of the harvested biomass, except for alfalfa. The amount of saved CO2 emissions varied from 1.0 (fescue) to 8.6 t CO2eq ha−1 yr−1 (miscanthus harvested early or late). Due to its high biomass production, miscanthus was able to combine a high production of ethanol and a large saving of CO2 emissions. Miscanthus and switchgrass harvested late gave the best compromise between low N‐P‐K requirements, high GHG saving per unit of biomass, and high productivity per hectare.


Biotechnology for Biofuels | 2017

Understanding the structural and chemical changes of plant biomass following steam explosion pretreatment

Thomas Auxenfans; David Crônier; Brigitte Chabbert; Gabriel Paës

BackgroundBiorefining of lignocellulosic biomass has become one of the most valuable alternatives for the production of multi-products such as biofuels. Pretreatment is a prerequisite to increase the enzymatic conversion of the recalcitrant lignocellulose. However, there is still considerable debate regarding the key features of biomass impacting the cellulase accessibility. In this study, we evaluate the structural and chemical features of three different representative biomasses (Miscanthus × giganteus, poplar and wheat straw), before and after steam explosion pretreatment at increasing severities, by monitoring chemical analysis, SEM, FTIR and 2D NMR.ResultsRegardless the biomass type, combined steam explosion pretreatment with dilute sulfuric acid impregnation resulted in significant improvement of the cellulose conversion. Chemical analyses revealed that the pretreatment selectively degraded the hemicellulosic fraction and associated cross-linking ferulic acids. As a result, the pretreated residues contained mostly cellulosic glucose and lignin. In addition, the pretreatment directly affected the cellulose crystallinity but these variations were dependent upon the biomass type. Important chemical modifications also occurred in lignin since the β-O-4′ aryl-ether linkages were found to be homolytically cleaved, followed by some recoupling/recondensation to β-β′ and β-5′ linkages, regardless the biomass type. Finally, 2D NMR analysis of the whole biomass showed that the pretreatment preferentially degraded the syringyl-type lignin fractions in miscanthus and wheat straw while it was not affected in the pretreated poplar samples.ConclusionsOur findings provide an enhanced understanding of parameters impacting biomass recalcitrance, which can be easily generalized to both woody and non-woody biomass species. Results indeed suggest that the hemicellulose removal accompanied by the significant reduction in the cross-linking phenolic acids and the redistribution of lignin are strongly correlated with the enzymatic saccharification, by loosening the cell wall structure thus allowing easier cellulase accessibility. By contrast, we have shown that the changes in the syringyl/guaiacyl ratio and the cellulose crystallinity do not seem to be relevant factors in assessing the enzymatic digestibility. Some biomass type-dependent and easily measurable FTIR factors are highly correlated to saccharification.


Applied Microbiology and Biotechnology | 2011

A thermostable feruloyl-esterase from the hemicellulolytic bacterium Thermobacillus xylanilyticus releases phenolic acids from non-pretreated plant cell walls

Harivony Rakotoarivonina; Béatrice Hermant; Brigitte Chabbert; Jean-Pierre Touzel; Caroline Rémond

A gene (Tx-est1) encoding a thermostable feruloyl-esterase was isolated from the genome of the Gram-positive hemicellulolytic thermophilic bacterium Thermobacillus xylanilyticus. This gene contains an open reading frame of 1,020xa0bp encoding a protein with molecular mass of 37.4xa0kDa, similar to feruloyl-esterases from cellulolytic bacteria and fungi. The recombinant enzyme Tx-Est1 was expressed and produced in Escherichia coli. Tx-Est1 contains the conserved putative lipase residues Ser 202, Asp 287, and His 322 which act as catalytic triad in its C-terminus part. Purified Tx-Est1 was active against phenolic acid derivatives and stable at high temperatures. Optimal activity was observed at 65xa0°C and the optimal pH was around 8.5. The kinetic parameters of the esterase were determined on various substrates. The enzyme displayed activity against methyl esters of hydrocinnamic acids and feruloylated arabino-xylotetraose, exhibiting high specificity and affinity for the latter. Our results showed that Tx-Est1 is a thermostable feruloyl-esterase which could be useful to hydrolyze arabinoxylans from graminaceous plant cell walls as the enzyme is able to release phenolic acids from a lignocellulose biomass.


Biotechnology for Biofuels | 2017

Exploring accessibility of pretreated poplar cell walls by measuring dynamics of fluorescent probes.

Gabriel Paës; Anouck Habrant; Jordane Ossemond; Brigitte Chabbert

BackgroundThe lignocellulosic cell wall network is resistant to enzymatic degradation due to the complex chemical and structural features. Pretreatments are thus commonly used to overcome natural recalcitrance of lignocellulose. Characterization of their impact on architecture requires combinatory approaches. However, the accessibility of the lignocellulosic cell walls still needs further insights to provide relevant information.ResultsPoplar specimens were pretreated using different conditions. Chemical, spectral, microscopic and immunolabeling analysis revealed that poplar cell walls were more altered by sodium chlorite-acetic acid and hydrothermal pretreatments but weakly modified by soaking in aqueous ammonium. In order to evaluate the accessibility of the pretreated poplar samples, two fluorescent probes (rhodamine B-isothiocyanate–dextrans of 20 and 70xa0kDa) were selected, and their mobility was measured by using the fluorescence recovery after photobleaching (FRAP) technique in a full factorial experiment. The mobility of the probes was dependent on the pretreatment type, the cell wall localization (secondary cell wall and cell corner middle lamella) and the probe size. Overall, combinatory analysis of pretreated poplar samples showed that even the partial removal of hemicellulose contributed to facilitate the accessibility to the fluorescent probes. On the contrary, nearly complete removal of lignin was detrimental to accessibility due to the possible cellulose–hemicellulose collapse.ConclusionsEvaluation of plant cell wall accessibility through FRAP measurement brings further insights into the impact of physicochemical pretreatments on lignocellulosic samples in combination with chemical and histochemical analysis. This technique thus represents a relevant approach to better understand the effect of pretreatments on lignocellulose architecture, while considering different limitations as non-specific interactions and enzyme efficiency.


BMC Plant Biology | 2013

PT-Flax (phenotyping and TILLinG of flax): development of a flax (Linum usitatissimum L.) mutant population and TILLinG platform for forward and reverse genetics

Maxime Chantreau; Sébastien Grec; Laurent Gutierrez; Marion Dalmais; Christophe Pineau; Hervé Demailly; Christine Paysant-Leroux; Reynald Tavernier; Jean-Paul Trouvé; Manash Chatterjee; Xavier Guillot; Véronique Brunaud; Brigitte Chabbert; Olivier Van Wuytswinkel; Abdelhafid Bendahmane; Brigitte Thomasset; Simon Hawkins

BackgroundFlax (Linum usitatissimum L.) is an economically important fiber and oil crop that has been grown for thousands of years. The genome has been recently sequenced and transcriptomics are providing information on candidate genes potentially related to agronomically-important traits. In order to accelerate functional characterization of these genes we have generated a flax EMS mutant population that can be used as a TILLinG (Targeting Induced Local Lesions in Genomes) platform for forward and reverse genetics.ResultsA population of 4,894xa0M2 mutant seed families was generated using 3 different EMS concentrations (0.3%, 0.6% and 0.75%) and used to produce M2 plants for subsequent phenotyping and DNA extraction. 10,839 viable M2 plants (4,033 families) were obtained and 1,552 families (38.5%) showed a visual developmental phenotype (stem size and diameter, plant architecture, flower-related). The majority of these families showed more than one phenotype. Mutant phenotype data are organised in a database and can be accessed and searched at UTILLdb (http://urgv.evry.inra.fr/UTILLdb). Preliminary screens were also performed for atypical fiber and seed phenotypes. Genomic DNA was extracted from 3,515xa0M2 families and eight-fold pooled for subsequent mutant detection by ENDO1 nuclease mis-match cleavage. In order to validate the collection for reverse genetics, DNA pools were screened for two genes coding enzymes of the lignin biosynthesis pathway: Coumarate-3-Hydroxylase (C3H) and Cinnamyl Alcohol Dehydrogenase (CAD). We identified 79 and 76 mutations in the C3H and CAD genes, respectively. The average mutation rate was calculated as 1/41u2009Kb giving rise to approximately 9,000 mutations per genome. Thirty-five out of the 52 flax cad mutant families containing missense or codon stop mutations showed the typical orange-brown xylem phenotype observed in CAD down-regulated/mutant plants in other species.ConclusionsWe have developed a flax mutant population that can be used as an efficient forward and reverse genetics tool. The collection has an extremely high mutation rate that enables the detection of large numbers of independant mutant families by screening a comparatively low number of M2 families. The population will prove to be a valuable resource for both fundamental research and the identification of agronomically-important genes for crop improvement in flax.


Phytochemistry | 2010

Development of antibodies against secoisolariciresinol – Application to the immunolocalization of lignans in Linum usitatissimum seeds

Jacques Attoumbré; Christophe Bienaimé; Frédéric Dubois; Marc-André Fliniaux; Brigitte Chabbert; Sylvie Baltora-Rosset

Lignans are widely distributed plant metabolites associated with a large range of biological activities. In order to gain insight into their biosynthesis and their spatio-temporal accumulation an immunological probe was developed. Secondary metabolites generally have too small molecular weight to be antigenic and have to be associated with a carrier protein. Secoisolariciresinol was chosen as the hapten and was linked to bovine serum albumin via a spacer arm, the p-aminohippuric acid. The artificial antigen was injected to New Zealand rabbits. The successful production of polyclonal antibodies against secoisolariciresinol was assessed with indirect enzyme immunosorbent assay (ELISA) by comparison with pre-immune serum and by competitive assays using dilutions of secoisolariciresinol standards. The antibodies had an IC(50) value of 94 μg/ml and showed moderate cross-reactivities with structurally related compounds. They were thus used to immunolocalize lignans in flaxseed (Linum usitatissimum), one of the richest sources of lignans. The immunohistochemical labeling allowed us to localize for the first time lignans in planta. They are mainly localized in the secondary wall of the sclerite cells of the outer integument of the seed. A very light labeling is also observed in cytoplasmic inclusions of the endosperm. The results were correlated with HPLC analytical results which enabled to evaluate the relative lignan quantities: in flaxseed about 90% of the metabolites are localized in the outer integument.


Plant Biotechnology Journal | 2015

Functional analyses of cellulose synthase genes in flax (Linum usitatissimum) by virus-induced gene silencing

Maxime Chantreau; Brigitte Chabbert; Sylvain Billiard; Simon Hawkins; Godfrey Neutelings

Flax (Linum usitatissimum) bast fibres are located in the stem cortex where they play an important role in mechanical support. They contain high amounts of cellulose and so are used for linen textiles and in the composite industry. In this study, we screened the annotated flax genome and identified 14 distinct cellulose synthase (CESA) genes using orthologous sequences previously identified. Transcriptomics of primary cell wall and secondary cell wall flax CESA genes showed that some were preferentially expressed in different organs and stem tissues providing clues as to their biological role(s) in planta. The development for the first time in flax of a virus-induced gene silencing (VIGS) approach was used to functionally evaluate the biological role of different CESA genes in stem tissues. Quantification of transcript accumulation showed that in many cases, silencing not only affected targeted CESA clades, but also had an impact on other CESA genes. Whatever the targeted clade, inactivation by VIGS affected plant growth. In contrast, only clade 1- and clade 6-targeted plants showed modifications in outer-stem tissue organization and secondary cell wall formation. In these plants, bast fibre number and structure were severely impacted, suggesting that the targeted genes may play an important role in the establishment of the fibre cell wall. Our results provide new fundamental information about cellulose biosynthesis in flax that should facilitate future plant improvement/engineering.


Bioenergy Research | 2013

Changes in Phenolics Distribution After Chemical Pretreatment and Enzymatic Conversion of Miscanthus × giganteus Internode

Nassim Belmokhtar; Anouck Habrant; N. Lopes Ferreira; Brigitte Chabbert

In addition to lignin, grass cell walls are characterized by the presence of hydroxycinnamic acids that play a significant role in cross-linking polymers into a cohesive network, and pretreatments are required to overcome the recalcitrance of lignocelluloses prior to enzymatic bioconversion of polysaccharides. The effects of dilute acid and ammonium hydroxide pretreatments were studied on the chemical composition and enzymatic saccharification of Miscanthus internodes fragments. The hydroxycinnamic acid content was reduced after both pretreatments, while lignin got enriched in condensed linked structures. In addition, dilute acid pretreatment was effective in decreasing xylan content of Miscanthus, while ammonia treatment induced a marked swelling effect on the cell walls of parenchyma, vascular sclerenchyma, and epidermal sclerenchyma. The phenol distribution at the cell level was estimated using UV transmission microspectrophotometry. Internode cell walls displayed different UV spectra according to the cell type. However, the secondary cell walls had similar UV spectra after pretreatment, whereas spectra recorded at the cell corner region displayed variations according to cell type and pretreatment. Acid pretreatment was more efficient than ammonia to improve the conversion of polysaccharides by a Trichoderma cellulolytic cocktail. Although pretreatments achieved moderate saccharification yields, the secondary cell walls were altered at some pit regions of the vascular sclerenchyma whereas parenchyma appeared recalcitrant. Variations in the UV spectra of enzyme-digested cell walls suggest pretreatment-dependent heterogeneity of the phenolic distribution in the more recalcitrant cell walls.

Collaboration


Dive into the Brigitte Chabbert's collaboration.

Top Co-Authors

Avatar

Gabriel Paës

University of Reims Champagne-Ardenne

View shared research outputs
Top Co-Authors

Avatar

Anouck Habrant

University of Reims Champagne-Ardenne

View shared research outputs
Top Co-Authors

Avatar

Isabelle Bertrand

Institut national de la recherche agronomique

View shared research outputs
Top Co-Authors

Avatar

Caroline Rémond

Institut national de la recherche agronomique

View shared research outputs
Top Co-Authors

Avatar

Abbas Rammal

University of Reims Champagne-Ardenne

View shared research outputs
Top Co-Authors

Avatar

Eric Perrin

University of Reims Champagne-Ardenne

View shared research outputs
Top Co-Authors

Avatar

Valeriu Vrabie

University of Reims Champagne-Ardenne

View shared research outputs
Top Co-Authors

Avatar

Véronique Aguié-Béghin

Canadian Real Estate Association

View shared research outputs
Top Co-Authors

Avatar

Michael Molinari

University of Reims Champagne-Ardenne

View shared research outputs
Top Co-Authors

Avatar

Johnny Beaugrand

University of Reims Champagne-Ardenne

View shared research outputs
Researchain Logo
Decentralizing Knowledge