Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Isabelle Bertrand is active.

Publication


Featured researches published by Isabelle Bertrand.


Soil Research | 2003

Chemical characteristics of phosphorus in alkaline soils from southern Australia

Isabelle Bertrand; R. J. Holloway; Roger Armstrong; Mike J. McLaughlin

This study was performed to better understand the chemical behaviour of P in a variety of alkaline soils from southern Australia. To do so, surface soil samples of 47 alkaline cropping soils from Upper Eyre Peninsula in South Australia and from western Victoria were collected. The 22 soils collected from Eyre Peninsula were Calcarosols, and those from western Victoria were Vertosols, Alkaline Duplex soils, Sodosols, and Red Brown Calcareous soils. Parameters included total and amorphous Al and Fe, organic C, organic P, CaCO3 content, P sorption characteristics, phosphorus buffer capacity, calcium lactate (Ca-Lac) extractable P, bicarbonate-extractable (Colwell) P, water-extractable P, anion exchange membrane extractable P (AEM-P), and isotopically exchangeable P (labile P). Concentrations of micronutrients in the Calcarosols were relatively low, considered to be a function of low clay contents. Given very low background Cd concentrations in the soils, it was estimated from Cd measurements that the majority of total P in the soils was derived from previous fertiliser applications. Phosphorus buffer capacities (PBCs) were relatively high in the Calcarosols and moderately high in the other alkaline soils. P sorption behaviour in the Calcarosols was a direct function of CaCO3 content, although in the other alkaline soils, amorphous Al and Fe oxides were the principal determinants of the P sorption behaviour. Both Colwell and Ca-Lac extractants dissolved non-labile P in the highly calcareous soils, whereas AEM appeared to only remove surface-adsorbed P. In addition, Colwell P values were positively related to PBC and to the slope term in the Freundlich model (Kf) when Kf > 10. It is suggested that AEM-P may be a better predictor of P availability in highly calcareous soils compared with the other extractants.


Plant and Soil | 2006

Can the Biochemical Features and Histology of Wheat Residues Explain their Decomposition in Soil

Isabelle Bertrand; Brigitte Chabbert; Bernard Kurek; Sylvie Recous

The biochemical characteristics or quality of crop residues is an important factor governing soil residue decomposition. To improve C and N biotransformation models the process underlying this decomposition needs to be better understood and new quality criteria found to describe it. The aims of this explorative study were to (i) improve our understanding of residue decomposition from detailed studies of cell wall biochemical compositions and tissue architecture (ii) find new ways of exploring generic indicators of organic matter quality. To do this, the cell wall composition and tissue architecture of wheat leaves, internodes and roots, before and after their incorporation into soil were determined. Results showed that leaves which were poorly lignified decomposed faster in soil than internodes and roots. Cellulose was the most degraded polysaccharide irrespective of wheat residue. However, cellulose was much more degraded in the case of leaves as compared to internodes and roots. Leaves also presented a highly condensed lignin structure and the extent to which uncondensed leaf lignin was affected by soil decomposition suggests that the contribution of leaf lignin to C mineralization during incubation was very low. Roots which contained similar amounts of lignin than the internodes decomposed more slowly. Roots were enriched in phenolic acids, and more particularly p-coumaric acid (pCA) and presented a more condensed lignin structure than internodes. Phenolic acids are involved in the formation of lignin–polysaccharide complexes known to be recalcitrant to enzymatic attack. Microscopic investigations confirmed that the vessels were the most resistant tissues to decomposition in soil and this could be related either to their lignin content or to the quality of this lignin (condensed-like type lignin). Therefore, cell wall biochemical analyses have revealed that phenolic acids, which in their esterified form represent only 0.1–1% of plant dry matter, have cross link functions within the cell walls that could be of major interest in estimating soil residue degradability. Lignin quality (monomers, level of condensation) was another crucial criterion that could explain why residues with similar amounts of lignin decomposed at different rates in soil (roots vs. aerial parts). Visualization of residue cell walls before and after decomposition in soil underlined the interest of a microscopic approach coupled with image analysis. This study, corroborated by the extensive literature on forage digestibility, confirmed that the proportions of vascular tissue and sclerenchyma cells in plant material are determinant factors affecting plant degradability. In the future, classification of plant material based on these criteria could lead to the definition of new quality parameters for models of C and N biotransformation in soil.


Plant and Soil | 1999

Dynamics of phosphorus in the rhizosphere of maize and rape grown on synthetic, phosphated calcite and goethite

Isabelle Bertrand; Philippe Hinsinger; Benoît Jaillard; Jean-Claude Arvieu

In calcareous soils the dynamics of phosphorus is controlled by calcite and iron oxides such as goethite which strongly retain P and consequently maintain low P concentrations in soil solution. Plants can drastically change chemical conditions in the rhizosphere, in particular by releasing H+ or OH− or by excreting organic anions. By modifying the dissolution/precipitation and desorption/adsorption equilibria, roots can influence the mobility of soil P. The aim of this work was to test whether H+ or OH− release can induce the mobilization of P in the rhizosphere of maize and rape supplied with NO3-N or NH4-N and grown on synthetic phosphated calcite or goethite as sole source of P. With P-calcite, the mobilization of P was generally related to the acidification of the rhizosphere. With P-goethite, rhizosphere acidification induced some increase of DTPA-extractable Fe and hence dissolution of goethite. Rhizosphere P was concomitantly depleted but the mechanisms involved are less clear. The difference in behavior of the two species is discussed.


Bioresource Technology | 2009

Soil decomposition of wheat internodes of different maturity stages: relative impact of the soluble and structural fractions.

Isabelle Bertrand; Maxime Prevot; Brigitte Chabbert

The aim of this study was to clarify the importance of the soluble fraction on cell wall decomposition. Wheat plant was chosen as a model and was harvested at three stages of maturity: anthesis (A stage), 20 days after anthesis (B stage) and physiological maturity (PM stage). Wheat third internode (numbered down from the ear) were selected for this study. Internode age influenced the cumulative CO(2) kinetics with internodes from wheat stem harvested at anthesis mineralizing 62.1%+/-2.2 of added residue C whereas those harvested at the B and PM stages mineralized 58.8%+/-1.4 and 51.6%+/-1.7, respectively of the added C. Chemical analyses revealed that maturation of the selected internodes mainly altered residue quality by modifying the proportion of soluble to cell wall fractions rather than the quality of these fractions. The hexose to pentose ratios were good biomarkers of microbial sugars for both soluble and cell wall fractions, as were the uronic acids, which are not commonly determined in soil decomposition studies. This study clearly demonstrated that the contents of the internode soluble fraction did not affect the extent of cell wall C mineralization. Therefore, the soluble content of crop residues would not regulate the soil microbial populations able to mineralize cell wall C. However, this needs to be validated on a broader range of residue types with different nature of cell wall C or soluble compounds.


Soil Research | 2002

The rapid assessment of concentrations and solid phase associations of macro- and micronutrients in alkaline soils by mid-infrared diffuse reflectance spectroscopy

Isabelle Bertrand; L. Janik; R. E. Holloway; Roger Armstrong; Mike J. McLaughlin

Chemical analysis is a crucial but often expensive and time consuming step in the characterisation of soils. Mid-infrared diffuse reflectance (MIR-DRIFT) spectroscopy coupled with partial least square (PLS) analysis was used to determine macro- and micronutrient concentrations of a range of alkaline soils from southern Australia. Solid phase associations of macro- and micronutrients were also investigated using the mineralogical information contained in the infrared spectra of soil samples. Results showed that MIR-PLS analysis is a powerful and rapid technique for the accurate prediction of more than 15 chemical properties from each soil sample spectrum. Correlation coefficients for MIR derived concentration versus laboratory determined values were greater than R2 = 0.80 for soil moisture, calcium carbonate concentration, total concentration of Mg, K, S, Fe, Al, Mn, Zn, Cu, and oxalate- extractable Al, Fe, Mn, and Si. In calcareous soils, sulfur was associated with carbonate and conversely Mg was more related to the clay concentration of soils. Micronutrients such as Fe, Zn, Mn, and Cu were positively associated with smectite/illite in the clay fraction and negatively with kaolinite. The potential use of these results in partitioning model to assess plant available micronutrients pools is discussed.


Ecology | 2015

Functional breadth and home-field advantage generate functional differences among soil microbial decomposers

Nicolas Fanin; Nathalie Fromin; Isabelle Bertrand

In addition to the effect of litter quality (LQ) on decomposition, increasing evidence is demonstrating that carbon mineralization can be influenced by the past resource history, mainly through following two processes: (1) decomposer communities from recalcitrant litter environments may have a wider functional ability to decompose a wide range of litter species than those originating from richer environments, i.e., the functional breadth (FB) hypothesis; and/or (2) decomposer communities may be specialized towards the litter they most frequently encounter, i.e., the home-field advantage (HFA) hypothesis. Nevertheless, the functional dissimilarities among contrasting microbial communities, which are generated by the FB and the HFA, have rarely been simultaneously quantified in the same experiment, and their relative contributions over time have never been assessed. To test these hypotheses, we conducted a reciprocal transplant decomposition experiment under controlled conditions using litter and soil originating from four ecosystems along a land-use gradient (forest, plantation, grassland, and cropland) and one additional treatment using 13C-labelled flax litter allowing us to assess the priming effect (PE) in each ecosystem. We found substantial effects of LQ on carbon mineralization (more than two-thirds of the explained variance), whereas the contribution of the soil type was fairly low (less than one-tenth), suggesting that the contrasting soil microbial communities play only a minor role in regulating decomposition rates. Although the results on PE showed that we overestimated litter-derived CO2 fluxes, litter-microbe interactions contributed significantly to the unexplained variance observed in carbon mineralization models. The magnitudes of FB and HFA were relatively similar, but the directions of these mechanisms were sometimes opposite depending on the litter and soil types. FB and HFA estimates calculated on parietal sugar mass loss were positively correlated with those calculated on enzymatic activity, confirming the idea that the interaction between litter quality and microbial community structure may modify the trajectory of carbon mineralization via enzymatic synthesis. We conclude that although litter quality was the predominant factor controlling litter mineralization, the local microbial communities and interactions with their substrates can explain a small (< 5%) but noticeable portion of carbon fluxes.


Journal of Plant Nutrition | 2000

Dissolution of iron oxyhydroxide in the rhizosphere of various crop species.

Isabelle Bertrand; Philippe Hinsinger

Abstract The root‐induced dissolution of a synthetic goethite was studied in the rhizosphere of four plants species that had been previously supplied with and without adequate amounts of Fe. Plants were grown with a cropping device wich enabled an easy collection of whole plants (roots included) and rhizosphere material. For this purpose, roots developed as a planar mat on top of a mesh which separated them from a thin layer of a goethite‐quartz mixture. The rates of dissolution of goethite deduced from the uptake of Fe achieved by the plants were compared with the rates of dissolution obtained from a batch experiment with acidic solutions. The results showed that goethite was significantly dissolved by the three strategy I species, more so by rape and pea than by white lupin. The sole strategy II species studied (maize) exhibited the least Fe uptake and the occurrence of any dissolution of goethite remained unsignificant in this case. The amounts of Fe taken up by the plants never exceeded the initial amount of amorphous Fe contained in the goethite (oxalate extractable Fe, Feox). However, Feox increased in the rhizosphere of pea and rape. These results suggest that these species which took up the largest amounts of Fe indeed dissolved some crystalline goethite. Conversely, maize seemed to rely mostly on the dissolution of amorphous Fe contained as trace amounts in the goethite. Considering the low rates of dissolution measured in the batch experiment at the pH close to the rhizosphere pH found for the various species studied, proton excretion by roots could contribute only a small proportion of root‐induced dissolution of goethite. The contribution of other mechanisms is discussed.


Frontiers in Microbiology | 2016

Enzymatic Strategies and Carbon Use Efficiency of a Litter-Decomposing Fungus Grown on Maize Leaves, Stems, and Roots.

Gwenaëlle Lashermes; Angélique Gainvors-Claisse; Sylvie Recous; Isabelle Bertrand

Soil microorganisms can control the soil cycles of carbon (C), and depending on their C-use efficiency (CUE), these microorganisms either contribute to C stabilization in soil or produce CO2 when decomposing organic matter. However, little is known regarding the enzyme investment of microbial decomposers and the effects on their CUE. Our objective was to elucidate the strategies of litter-decomposing fungi as a function of litter quality. Fungal biosynthesis and respiration were accounted for by quantifying the investment in enzyme synthesis and enzyme efficiency. The basidiomycete Phanerochaete chrysosporium was grown on the leaves, stems, and roots of maize over 126 days in controlled conditions. We periodically measured the fungal biomass, enzyme activity, and chemical composition of the remaining litter and continuously measured the evolved C–CO2. The CUE observed for the maize litter was highest in the leaves (0.63), intermediate in the roots (0.40), and lowest in the stems (0.38). However, the enzyme efficiency and investment in enzyme synthesis did not follow the same pattern. The amount of litter C decomposed per mole of C-acquiring hydrolase activity was 354 μg C in the leaves, 246 μg C in the roots, and 1541 μg C in the stems (enzyme efficiency: stems > leaves > roots). The fungus exhibited the highest investment in C-acquiring enzyme when grown on the roots and produced 40–80% less enzyme activity when grown on the stems and leaves (investment in enzymes: roots > leaves > stems). The CUE was dependent on the initial availability and replenishment of the soluble substrate fraction with the degradation products. The production of these compounds was either limited because of the low enzyme efficiency, which occurred in the roots, or because of the low investments in enzyme synthesis, which occurred in the stems. Fungal biosynthesis relied on the ability of the fungus to invest in enzyme synthesis and the efficient interactions between the enzymes and the substrate. The investment decreased when N was limited, whereas the efficiency of the C-acquiring enzymes was primarily explained by the hemicellulose content and its embedment in recalcitrant lignin linkages. Our results are crucial for modeling microbial allocation strategies.


PLOS ONE | 2014

Interacting Microbe and Litter Quality Controls on Litter Decomposition: A Modeling Analysis

Daryl L. Moorhead; Gwenaëlle Lashermes; Sylvie Recous; Isabelle Bertrand

The decomposition of plant litter in soil is a dynamic process during which substrate chemistry and microbial controls interact. We more clearly quantify these controls with a revised version of the Guild-based Decomposition Model (GDM) in which we used a reverse Michaelis-Menten approach to simulate short-term (112 days) decomposition of roots from four genotypes of Zea mays that differed primarily in lignin chemistry. A co-metabolic relationship between the degradation of lignin and holocellulose (cellulose+hemicellulose) fractions of litter showed that the reduction in decay rate with increasing lignin concentration (LCI) was related to the level of arabinan substitutions in arabinoxylan chains (i.e., arabinan to xylan or A∶X ratio) and the extent to which hemicellulose chains are cross-linked with lignin in plant cell walls. This pattern was consistent between genotypes and during progressive decomposition within each genotype. Moreover, decay rates were controlled by these cross-linkages from the start of decomposition. We also discovered it necessary to divide the Van Soest soluble (labile) fraction of litter C into two pools: one that rapidly decomposed and a second that was more persistent. Simulated microbial production was consistent with recent studies suggesting that more rapidly decomposing materials can generate greater amounts of potentially recalcitrant microbial products despite the rapid loss of litter mass. Sensitivity analyses failed to identify any model parameter that consistently explained a large proportion of model variation, suggesting that feedback controls between litter quality and microbial activity in the reverse Michaelis-Menten approach resulted in stable model behavior. Model extrapolations to an independent set of data, derived from the decomposition of 12 different genotypes of maize roots, averaged within <3% of observed respiration rates and total CO2 efflux over 112 days.


Plant and Soil | 2018

Organic phosphorus in the terrestrial environment: a perspective on the state of the art and future priorities

Timothy S. George; Courtney D. Giles; Daniel Menezes-Blackburn; Leo M. Condron; A. C. Gama-Rodrigues; Deb P. Jaisi; Friederike Lang; Andrew L. Neal; Marc I. Stutter; Danilo S. Almeida; Roland Bol; K. G. Cabugao; Luisella Celi; James B. Cotner; Gu Feng; D. S. Goll; M. Hallama; J. Krueger; Claude Plassard; Anna Rosling; Tegan Darch; Tandra D. Fraser; Reiner Giesler; Alan E. Richardson; Federica Tamburini; Charles A. Shand; David G. Lumsdon; Hao Zhang; M. S. A. Blackwell; Catherine Wearing

BackgroundThe dynamics of phosphorus (P) in the environment is important for regulating nutrient cycles in natural and managed ecosystems and an integral part in assessing biological resilience against environmental change. Organic P (Po) compounds play key roles in biological and ecosystems function in the terrestrial environment being critical to cell function, growth and reproduction.ScopeWe asked a group of experts to consider the global issues associated with Po in the terrestrial environment, methodological strengths and weaknesses, benefits to be gained from understanding the Po cycle, and to set priorities for Po research.ConclusionsWe identified seven key opportunities for Po research including: the need for integrated, quality controlled and functionally based methodologies; assessment of stoichiometry with other elements in organic matter; understanding the dynamics of Po in natural and managed systems; the role of microorganisms in controlling Po cycles; the implications of nanoparticles in the environment and the need for better modelling and communication of the research. Each priority is discussed and a statement of intent for the Po research community is made that highlights there are key contributions to be made toward understanding biogeochemical cycles, dynamics and function of natural ecosystems and the management of agricultural systems.

Collaboration


Dive into the Isabelle Bertrand's collaboration.

Top Co-Authors

Avatar

Brigitte Chabbert

University of Reims Champagne-Ardenne

View shared research outputs
Top Co-Authors

Avatar

Sylvie Recous

Institut national de la recherche agronomique

View shared research outputs
Top Co-Authors

Avatar

Abbas Rammal

University of Reims Champagne-Ardenne

View shared research outputs
Top Co-Authors

Avatar

Valeriu Vrabie

University of Reims Champagne-Ardenne

View shared research outputs
Top Co-Authors

Avatar

Eric Perrin

University of Reims Champagne-Ardenne

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Gaylord Erwan Machinet

Institut national de la recherche agronomique

View shared research outputs
Top Co-Authors

Avatar

Marie Sauvadet

Institut national de la recherche agronomique

View shared research outputs
Top Co-Authors

Avatar

Nicolas Fanin

Institut national de la recherche agronomique

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge