Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Brigitte Goulet is active.

Publication


Featured researches published by Brigitte Goulet.


Molecular Cell | 2004

A Cathepsin L Isoform that Is Devoid of a Signal Peptide Localizes to the Nucleus in S Phase and Processes the CDP/Cux Transcription Factor

Brigitte Goulet; Amos Baruch; Nam-Sung Moon; Madeleine Poirier; Laurent Sansregret; Ann H. Erickson; Matthew Bogyo; Alain Nepveu

The subclass of cysteine proteases termed lysosomal cathepsins has long been thought to be primarily involved in end-stage protein breakdown within lysosomal compartments. Furthermore, few specific protein substrates for these proteases have been identified. We show here that cathepsin L functions in the regulation of cell cycle progression through proteolytic processing of the CDP/Cux transcription factor. CDP/Cux processing in situ was increased following ectopic expression of cathepsin L but was reduced in Cat L(-/-) cells. Furthermore, catalytically active cathepsin L was localized to the nucleus during the G1-S transition as detected by immunofluorescence imaging and labeling using activity-based probes. Trafficking of cathepsin L to the nucleus is accomplished through a mechanism involving translation initiation at downstream AUG sites and the synthesis of proteases that are devoid of a signal peptide. Overall, these results uncover an as yet unsuspected role for cysteine proteases in the control of cell cycle progression.


Molecular Cancer Research | 2007

Increased Expression and Activity of Nuclear Cathepsin L in Cancer Cells Suggests a Novel Mechanism of Cell Transformation

Brigitte Goulet; Laurent Sansregret; Lam Leduy; Matthew Bogyo; Ekkehard Weber; Shyam S. Chauhan; Alain Nepveu

It is generally accepted that the role of cathepsin L in cancer involves its activities outside the cells once it has been secreted. However, cathepsin L isoforms that are devoid of a signal peptide were recently shown to be present in the nucleus where they proteolytically process the CCAAT-displacement protein/cut homeobox (CDP/Cux) transcription factor. A role for nuclear cathepsin L in cell proliferation could be inferred from the observation that the CDP/Cux processed isoform can accelerate entry into S phase. Here, we report that in many transformed cells the proteolytic processing of CDP/Cux is augmented and correlates with increased cysteine protease expression and activity in the nucleus. Taking advantage of an antibody that recognizes the prodomain of human cathepsin L, we showed that human cells express short cathepsin L species that do not contain a signal peptide, do not transit through the endoplasmic reticulum, are not glycosylated, and localize to the nucleus. We also showed that transformation by the ras oncogene causes rapid increases both in the production of short nuclear cathepsin L isoforms and in the processing of CDP/Cux. Using a cell-based assay, we showed that a cell-permeable inhibitor of cysteine proteases is able to delay the progression into S phase and the proliferation in soft agar of ras-transformed cells, whereas the non–cell-permeable inhibitor had no effect. Taken together, these results suggest that the role of cathepsin L in cancer might not be limited to its extracellular activities but may also involve its processing function in the nucleus. (Mol Cancer Res 2007;5(9):899–907)


Molecular and Cellular Biology | 2003

CDP/Cux Stimulates Transcription from the DNA Polymerase α Gene Promoter

Mary Truscott; Lélia Raynal; Peter Premdas; Brigitte Goulet; Lam Leduy; Ginette Bérubé; Alain Nepveu

ABSTRACT CDP/Cux (CCAAT-displacement protein/cut homeobox) contains four DNA binding domains, namely, three Cut repeats (CR1, CR2, and CR3) and a Cut homeodomain. CCAAT-displacement activity involves rapid but transient interaction with DNA. More stable DNA binding activity is up-regulated at the G1/S transition and was previously shown to involve an N-terminally truncated isoform, CDP/Cux p110, that is generated by proteolytic processing. CDP/Cux has been previously characterized as a transcriptional repressor. However, here we show that expression of reporter plasmids containing promoter sequences from the human DNA polymerase α (pol α), CAD, and cyclin A genes is stimulated in cotransfections with N-terminally truncated CDP/Cux proteins but not with full-length CDP/Cux. Moreover, expression of the endogenous DNA pol α gene was stimulated following the infection of cells with a retrovirus expressing a truncated CDP/Cux protein. Chromatin immunoprecipitation (ChIP) assays revealed that CDP/Cux was associated with the DNA pol α gene promoter specifically in the S phase. Using linker scanning analyses, in vitro DNA binding, and ChIP assays, we established a correlation between binding of CDP/Cux to the DNA pol α promoter and the stimulation of gene expression. Although we cannot exclude the possibility that stimulation of gene expression by CDP/Cux involved the repression of a repressor, our data support the notion that CDP/Cux participates in transcriptional activation. Notwithstanding its mechanism of action, these results establish CDP/Cux as an important transcriptional regulator in the S phase.


Molecular and Cellular Biology | 2006

The p110 Isoform of the CDP/Cux Transcription Factor Accelerates Entry into S Phase

Laurent Sansregret; Brigitte Goulet; Ryoko Harada; Brian J. Wilson; Lam Leduy; Jacques Bertoglio; Alain Nepveu

ABSTRACT The CDP/Cux transcription factor was previously found to acquire distinct DNA binding and transcriptional properties following a proteolytic processing event that takes place at the G1/S transition of the cell cycle. In the present study, we have investigated the role of the CDP/Cux processed isoform, p110, in cell cycle progression. Populations of cells stably expressing p110 CDP/Cux displayed a faster division rate and reached higher saturation density than control cells carrying the empty vector. p110 CDP/Cux cells reached the next S phase faster than control cells under various experimental conditions: following cell synchronization in G0 by growth factor deprivation, synchronization in S phase by double thymidine block treatment, or enrichment in G2 by centrifugal elutriation. In each case, duration of the G1 phase was shortened by 2 to 4 h. Gene inactivation confirmed the role of CDP/Cux as an accelerator of cell cycle progression, since mouse embryo fibroblasts obtained from Cutl1z/z mutant mice displayed a longer G1 phase and proliferated more slowly than their wild-type counterparts. The delay to enter S phase persisted following immortalization by the 3T3 protocol and transformation with H-RasV12. Moreover, CDP/Cux inactivation hindered both the formation of foci on a monolayer and tumor growth in mice. At the molecular level, expression of both cyclin E2 and A2 was increased in the presence of p110 CDP/Cux and decreased in its absence. Overall, these results establish that p110 CDP/Cux functions as a cell cycle regulator that accelerates entry into S phase.


Journal of Biological Chemistry | 2007

Carboxyl-terminal proteolytic processing of CUX1 by a caspase enables transcriptional activation in proliferating cells

Mary Truscott; Jean-Bernard Denault; Brigitte Goulet; Lam Leduy; Guy S. Salvesen; Alain Nepveu

Proteolytic processing at the end of the G1 phase generates a CUX1 isoform, p110, which functions either as a transcriptional activator or repressor and can accelerate entry into S phase. Here we describe a second proteolytic event that generates an isoform lacking two active repression domains in the COOH terminus. This processing event was inhibited by treatment of cells with synthetic and natural caspase inhibitors. In vitro, several caspases generated a processed isoform that co-migrated with the in vivo generated product. In cells, recombinant CUX1 proteins in which the region of cleavage was deleted or in which Asp residues were mutated to Ala, were not proteolytically processed. Importantly, this processing event was not associated with apoptosis, as assessed by terminal dUTP nick end labeling assay, cytochrome c localization, poly(ADP-ribose) polymerase cleavage, and fluorescence-activated cell sorting. Moreover, processing was observed in S phase but not in early G1, suggesting that it is regulated through the cell cycle. The functional importance of this processing event was revealed in reporter and cell cycle assays. A recombinant, processed, CUX1 protein was a more potent transcriptional activator of several cell cycle-related genes and was able to accelerate entry into S phase, whereas mutants that could not be processed were inactive in either assay. Conversely, cells treated with the quinoline-Val Asp-2,6-difluorophenoxymethylketone caspase inhibitor proliferated more slowly and exhibited delayed S phase entry following exit from quiescence. Together, our results identify a substrate of caspases in proliferating cells and suggest a mechanism by which caspases can accelerate cell cycle progression.


Biological Chemistry | 2006

A novel proteolytically processed CDP/Cux isoform of 90 kDa is generated by cathepsin L

Brigitte Goulet; Mary Truscott; Alain Nepveu

Abstract The Cut-like genes code for multiple isoforms of the CDP/Cux transcription factor. The full-length protein contains four DNA-binding domains: Cut repeats 1, 2 and 3 (CR1, CR2 and CR3) and the Cut homeodomain (HD). The p75 isoform is expressed from an mRNA that is initiated within intron 20 and contains only CR3 and HD. The p110 isoform is generated by proteolytic processing by cathepsin L and contains CR2, CR3 and HD. In the present study, we show that an additional isoform of 90 kDa is expressed in many cell lines of epithelial origin. Mapping experiments with deletion mutants indicated that the N-terminus of p90 is located upstream of CR2, between amino acids 918 and 938. Indeed, p90 and p110 displayed similar DNA-binding and transcriptional activities. The p90 isoform, like p110, was found to be generated by proteolytic processing. The steady-state level of both p90 and p110 correlated with the level of cathepsin L activity. Importantly, co-expression with a cathepsin L mutant that is initiated at downstream AUG sites also stimulated the generation of p90 and p110. These results strongly suggest that p90, like p110, is generated by cathepsin L isoforms that are devoid of a signal peptide.


Molecular Cancer Research | 2008

Proteolytic Processing of Cut Homeobox 1 by Neutrophil Elastase in the MV4;11 Myeloid Leukemia Cell Line

Brigitte Goulet; Yelena Markovic; Lam Leduy; Alain Nepveu

Proteolytic processing by cathepsin L generates p110 Cut homeobox 1 (CUX1) at the end of the G1 phase, whereas an alternative transcript encodes p75 CUX1. These short CUX1 isoforms were reported to be overexpressed in cancer cells, and transgenic mice overexpressing the p75 isoform were found to develop myeloproliferative disease–like myeloid leukemias. In the present study, we report that the neutrophil elastase can also generate a short CUX1 isoform in the MV4;11 acute myeloid leukemia cell line. Proteolytic processing was so efficient that the full-length CUX1 protein was detected only when cells were maintained in the presence of the specific elastase inhibitor III. In agreement with these findings, higher levels of the processed cyclin E isoforms were also detected in MV4;11 cells. Reappearance of full-length cyclin E and CUX1 could be induced upon the treatment of MV4;11 cells with the differentiation inducer phorbol 12-myristate 13-acetate or, unexpectedly, following overexpression of a short recombinant CUX1 protein. In both cases, the mechanism involved transcriptional repression of the neutrophil elastase gene. This result revealed a negative feedback loop whereby CUX1 shuts down the expression of the protease that cleaves it. Overall, the findings in MV4;11 and other cancer cells suggest that various mechanisms are used in cancer to favor the expression of short CUX1 isoforms. (Mol Cancer Res 2008;6(4):644–53)


Cancer Research | 2002

Characterization of a tissue-specific CDP/Cux isoform, p75, activated in breast tumor cells.

Brigitte Goulet; Peter H. Watson; Madeleine Poirier; Lam Leduy; Ginette Bérubé; Sarkis Meterissian; Paul Jolicoeur; Alain Nepveu


Cell Cycle | 2004

Complete and Limited Proteolysis in Cell Cycle Progression

Brigitte Goulet; Alain Nepveu


Archive | 2003

Methods for diagnosing the presence or stage of cancer

Alain Nepveu; Brigitte Goulet; Nam-Sung Moon; Matthew Bogyo; Amos Baruch; Peter H. Watson

Collaboration


Dive into the Brigitte Goulet's collaboration.

Top Co-Authors

Avatar

Alain Nepveu

Université de Montréal

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Alain Nepveu

Université de Montréal

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Peter H. Watson

Queen's University Belfast

View shared research outputs
Researchain Logo
Decentralizing Knowledge