Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Brigitte M. Pützer is active.

Publication


Featured researches published by Brigitte M. Pützer.


Nature Genetics | 2000

Role of the p53-homologue p73 in E2F1-induced apoptosis

Thorsten Stiewe; Brigitte M. Pützer

Most human cancers harbour aberrations of cell-cycle control, which result in deregulated activity of the E2F transcription factors with concomitant enhanced cell-cycle progression. Oncogenic signalling by E2F1 has recently been linked to stabilization and activation of the tumour suppressor p53 (refs 1,3,4). The p73 protein shares substantial sequence homology and functional similarity with p53 (refs 5–7 ). Hence, several previously considered p53-independent cellular activities may be attributable to p73. Here we provide evidence that E2F1 directly activates transcription of TP73, leading to activation of p53-responsive target genes and apoptosis. Disruption of p73 function by a tumour-derived p53 mutant reduced E2F1-mediated apoptosis. Thus, p73 activation by deregulated E2F1 activity might constitute a p53-independent, anti-tumorigenic safeguard mechanism.


Nature | 2015

Comprehensive genomic profiles of small cell lung cancer

Julie George; Jing Shan Lim; Se Jin Jang; Yupeng Cun; Luka Ozretić; Gu Kong; Frauke Leenders; Xin Lu; Lynnette Fernandez-Cuesta; Graziella Bosco; Christian Müller; Ilona Dahmen; Nadine S. Jahchan; Kwon-Sik Park; Dian Yang; Anthony N. Karnezis; Dedeepya Vaka; Angela Torres; Maia Segura Wang; Jan O. Korbel; Roopika Menon; Sung-Min Chun; Deokhoon Kim; Matt Wilkerson; Neil Hayes; David Engelmann; Brigitte M. Pützer; Marc Bos; Sebastian Michels; Ignacija Vlasic

We have sequenced the genomes of 110 small cell lung cancers (SCLC), one of the deadliest human cancers. In nearly all the tumours analysed we found bi-allelic inactivation of TP53 and RB1, sometimes by complex genomic rearrangements. Two tumours with wild-type RB1 had evidence of chromothripsis leading to overexpression of cyclin D1 (encoded by the CCND1 gene), revealing an alternative mechanism of Rb1 deregulation. Thus, loss of the tumour suppressors TP53 and RB1 is obligatory in SCLC. We discovered somatic genomic rearrangements of TP73 that create an oncogenic version of this gene, TP73Δex2/3. In rare cases, SCLC tumours exhibited kinase gene mutations, providing a possible therapeutic opportunity for individual patients. Finally, we observed inactivating mutations in NOTCH family genes in 25% of human SCLC. Accordingly, activation of Notch signalling in a pre-clinical SCLC mouse model strikingly reduced the number of tumours and extended the survival of the mutant mice. Furthermore, neuroendocrine gene expression was abrogated by Notch activity in SCLC cells. This first comprehensive study of somatic genome alterations in SCLC uncovers several key biological processes and identifies candidate therapeutic targets in this highly lethal form of cancer.


Cell Death & Differentiation | 2002

Role of p73 in malignancy: tumor suppressor or oncogene?

Thorsten Stiewe; Brigitte M. Pützer

The recently identified p53 family member, p73, shows substantial structural and functional homology with p53. However, despite the established role of p53 as a proto-type tumor suppressor, a similar function of p73 in malignancy is questionable. Overexpression of p73 can activate typical p53-responsive genes, and activation of p73 has been implicated in apoptotic cell death induced by aberrant cell proliferation and some forms of DNA-damage. These data together with the localization of TP73 on chromosome 1p36, a region frequently deleted in a variety of human tumors, led to the hypothesis that p73 has tumor suppressor activity just like p53. However, unlike p53−/− mice, p73 knockout mice do not develop tumors. Extensive studies on primary tumor tissues have revealed overexpression of wild-type p73 in the absence of p73 mutations instead, suggesting that p73 may augment, rather than inhibit tumor development. In contrast to p53, differential splicing of the TP73 gene locus gives rise to a complex pattern of interacting p73 isoforms with antagonistic functions. In fact, induction of apoptosis by increased levels of p73 can be blocked by both p53 mutants and the N-terminally truncated p73 isoforms, which were recently shown to possess oncogenic potential. In the light of these new findings the contradictory role of p73 in malignancy will be discussed.


Cancer Research | 2012

The Dark Side of E2F1: In Transit beyond Apoptosis

David Engelmann; Brigitte M. Pützer

E2F1 plays a critical role in cell-cycle progression and the induction of apoptosis in response to DNA damage. The latest evidence has uncovered that this tumor suppressor is most relevant for cancer progression and chemoresistance. Increased abundance of E2F1 triggers invasion and metastasis by activating growth receptor signaling pathways, which in turn promote an antiapoptotic tumor environment. The data shed light on the molecular mechanisms underlying E2F1-induced prometastatic activity and predict its radical switch from a mediator of cell death toward an accelerator of tumor progression. This raises the perspective of new drug targets at late-stage cancer.


Journal of the National Cancer Institute | 2010

E2F1 in Melanoma Progression and Metastasis

Vijay Alla; David Engelmann; Annett Niemetz; Jens Pahnke; Anke Schmidt; Manfred Kunz; Stephan Emmrich; Marc Steder; Dirk Koczan; Brigitte M. Pützer

Metastases are responsible for cancer deaths, but the molecular alterations leading to tumor progression are unclear. Overexpression of the E2F1 transcription factor is common in high-grade tumors that are associated with poor patient survival. To investigate the association of enhanced E2F1 activity with aggressive phenotype, we performed a gene-specific silencing approach in a metastatic melanoma model. Knockdown of endogenous E2F1 via E2F1 small hairpin RNA (shRNA) expression increased E-cadherin expression of metastatic SK-Mel-147 melanoma cells and reduced their invasive potential but not their proliferative activity. Although growth rates of SK-Mel-147 and SK-Mel-103 xenograft tumors expressing E2F1 shRNA or control shRNA were similar, mice implanted with cells expressing E2F1 shRNA had a smaller area of metastases per lung than control mice (n = 3 mice per group; 5% vs 46%, difference = 41%, 95% confidence interval = 15% to 67%; P = .01; one-way analysis of variance). We identified epidermal growth factor receptor as a direct target of E2F1 and demonstrated that inhibition of receptor signaling abrogates E2F1-induced invasiveness, emphasizing the importance of the E2F1-epidermal growth factor receptor interaction as a driving force in melanoma progression that may serve as a paradigm for E2F1-induced metastasis in other human cancers.


Clinical Cancer Research | 2004

Quantitative TP73 Transcript Analysis in Hepatocellular Carcinomas

Thorsten Stiewe; Sebastian Tuve; Martin Peter; Andrea Tannapfel; Ahmet H. Elmaagacli; Brigitte M. Pützer

Purpose: The p53 family member p73 displays significant homology to p53, but data from primary tumors demonstrating increased expression levels of p73 in the absence of any gene mutations argue against a classical tumor suppressor function. A detailed analysis of the p73 protein in tumor tissues has revealed expression of two classes of p73 isoforms. Whereas the proapoptotic, full-length, transactivation-competent p73 protein (TA-p73) has a putative tumor suppressor activity similar to p53, the antiapoptotic, NH2-terminally truncated, transactivation-deficient p73 protein (ΔTA-p73) has been shown to possess oncogenic activity. The oncogenic proteins can be generated by the following two different mechanisms: (a) aberrant splicing (p73Δex2, p73Δex2/3, ΔN′-p73) and (b) alternative promoter usage of a second intronic promoter (ΔN-p73). The purpose of our study was to elucidate the origin of ΔTA-p73 isoforms in hepatocellular carcinomas. Experimental Design: We analyzed the underlying mechanisms of p73 overexpression in cancer cells by quantification of p73 transcripts from 10 hepatocellular carcinoma patients using isoform-specific real-time reverse transcription-PCR. Results: Our data demonstrate that only aberrantly spliced ΔTA-p73 transcripts from the TA promoter show significantly increased expression levels in the tumor whereas the ΔN-p73 transcript generated from the second promoter is not significantly up-regulated. Conclusions: Although we only analyzed 10 patient samples the results strongly suggest that the elevated activity of the first promoter (TA promoter) accounts for high-level expression of both full-length TA-p73 and aberrantly spliced ΔTA-p73 isoforms in hepatocellular carcinoma tissues.


Nature Reviews Clinical Oncology | 2006

Mechanisms of Disease: cancer targeting and the impact of oncogenic RET for medullary thyroid carcinoma therapy

Matthias Drosten; Brigitte M. Pützer

Growing evidence supports the concept of oncogene dependence for cancer development; inhibition of the initiating oncogene can result in revertion of the neoplastic phenotype. The outstanding role of the RET proto-oncogene in the development of medullary thyroid carcinoma (MTC) is well established. With the emerging knowledge concerning the signal transduction pathways leading to subsequent neoplastic transformation, oncogenic activated RET becomes a highly attractive target for selective cancer therapy. A variety of novel approaches that target RET directly or indirectly have recently emerged and an increasing number are currently being assessed in clinical trials. In view of these findings, it becomes strikingly obvious that inhibition of RET oncogene function can be a viable option for the treatment of MTC. We summarize the current evidence for RET involvement in the etiology of MTC, and the therapeutic targeting of this process in preclinical and clinical studies.


Cell Death & Differentiation | 2000

E1A is sufficient by itself to induce apoptosis independent of p53 and other adenoviral gene products.

Brigitte M. Pützer; Thorsten Stiewe; Parssanedjad K; Rega S; Esche H

Induction of apoptosis seems to be a key function in maintaining normal cell growth by exerting negative controls on cell proliferation and suppressing tumorigenesis. The adenovirus E1A oncogene shows both cell cycle progression and apoptotic functions. To understand the mechanism of E1A-induced apoptosis, the apoptotic function of E1A 13S was investigated in p53-null cells. We show here that E1A is sufficient by itself to induce substantial apoptosis independent of p53 and other adenoviral genes. The apoptotic function of E1A is accompanied by processing of caspase-3 and cleavage of poly(ADP-ribose)-polymerase. Cell death is significantly blocked by the caspase inhibitor zVAD-fmk and when coexpressed with E1B19K, Bcl-2 or the retinoblastoma protein (RB). Analyses of E1A mutants indicated that the apoptotic activity of E1A correlates closely with the ability to bind the key regulators of E2F1-induced apoptosis, p300 and RB. Finally, in vivo relevance of down-modulation of p53-independent apoptosis for efficient transformation is demonstrated.


Cell Cycle | 2012

E2F1 confers anticancer drug resistance by targeting ABC transporter family members and Bcl-2 via the p73/DNp73-miR-205 circuitry

Vijay Alla; Bhavani S. Kowtharapu; David Engelmann; Stephan Emmrich; Ulf Schmitz; Marc Steder; Brigitte M. Pützer

Resistance to anti-neoplastic agents is the major cause of therapy failure, leading to disease recurrence and metastasis. E2F1 is a strong inducer of apoptosis in response to DNA damage through its capacity to activate p53/p73 death pathways. Recent evidence, however, showed that E2F1, which is aberrantly expressed in advanced malignant melanomas together with antagonistic p73 family members, drives cancer progression. Investigating mechanisms responsible for dysregulated E2F1 losing its apoptotic function, we searched for genomic signatures in primary and late clinical tumor stages to allow the prediction of downstream effectors associated with apoptosis resistance and survival of aggressive melanoma cells. We identified miR-205 as specific target of p73 and found that upon genotoxic stress, its expression is sufficiently abrogated by endogenous DNp73. Significantly, metastatic cells can be rescued from drug resistance by selective knockdown of DNp73 or overexpression of miR-205 in p73-depleted cells, leading to increased apoptosis and the reduction of tumor growth in vivo. Our data delineate an autoregulatory circuit, involving high levels of E2F1 and DNp73 to downregulate miR-205, which, in turn, controls E2F1 accumulation. Finally, drug resistance associated to this genetic signature is mediated by removing the inhibitory effect of miR-205 on the expression of Bcl-2 and the ATP-binding cassette transporters A2 (ABCA2) and A5 (ABCA5) related to multi-drug resistance and malignant progression. These results define the E2F1-p73/DNp73-miR-205 axis as a crucial mechanism for chemoresistance and, thus, as a target for metastasis prevention.


Journal of Gene Medicine | 2008

Enhanced thoracic gene delivery by magnetic nanobead-mediated vector

Wenzhong Li; Nan Ma; Lee-Lee Ong; Alexander Kaminski; Christian Skrabal; Murat Ugurlucan; Peter Lorenz; Hans-Heinrich Gatzen; Karola Lützow; Andreas Lendlein; Brigitte M. Pützer; Ren-Ke Li; Gustav Steinhoff

Systemic gene delivery is limited by the adverse hydrodynamic conditions on the collection of gene carrier particles to the specific area. In the present study, a magnetic field was employed to guide magnetic nanobead (MNB)/polymer/DNA complexes after systemic administration to the left side of the mouse thorax in order to induce localized gene expression.

Collaboration


Dive into the Brigitte M. Pützer's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge