Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Alf Spitschak is active.

Publication


Featured researches published by Alf Spitschak.


Cancer Cell | 2013

DNp73 Exerts Function in Metastasis Initiation by Disconnecting the Inhibitory Role of EPLIN on IGF1R-AKT/STAT3 Signaling

Marc Steder; Vijay Alla; Claudia Meier; Alf Spitschak; Jens Pahnke; Katharina Fürst; Bhavani S. Kowtharapu; David Engelmann; Janine Petigk; Friederike Egberts; Susanne G. Schäd-Trcka; Gerd Gross; Dirk M. Nettelbeck; Annett Niemetz; Brigitte M. Pützer

Dissemination of cancer cells from primary tumors is the key event in metastasis, but specific determinants are widely unknown. Here, we show that DNp73, an inhibitor of the p53 tumor suppressor family, drives migration and invasion of nonmetastatic melanoma cells. Knockdown of endogenous DNp73 reduces this behavior in highly metastatic cell lines. Tumor xenografts expressing DNp73 show a higher ability to invade and metastasize, while growth remains unaffected. DNp73 facilitates an EMT-like phenotype with loss of E-cadherin and Slug upregulation. We provide mechanistic insight toward regulation of LIMA1/EPLIN by p73/DNp73 and demonstrate a direct link between the DNp73-EPLIN axis and IGF1R-AKT/STAT3 activation. These findings establish initiation of the invasion-metastasis cascade via EPLIN-dependent IGF1R regulation as major activity of DNp73.


Journal of Molecular Cell Biology | 2013

E2F1 promotes angiogenesis through the VEGF-C/VEGFR-3 axis in a feedback loop for cooperative induction of PDGF-B

David Engelmann; Deborah Mayoli-Nüssle; Christian Mayrhofer; Katharina Fürst; Vijay Alla; Anja Stoll; Alf Spitschak; Kerstin Abshagen; Brigitte Vollmar; Sophia Ran; Brigitte M. Pützer

Angiogenesis is essential for primary tumor growth and metastatic dissemination. E2F1, frequently upregulated in advanced cancers, was recently shown to drive malignant progression. In an attempt to decipher the molecular events underlying this behavior, we demonstrate that the tumor cell-associated vascular endothelial growth factor-C/receptor-3 (VEGF-C/VEGFR-3) axis is controlled by E2F1. Activation or forced expression of E2F1 in cancer cells leads to the upregulation of VEGFR-3 and its ligand VEGF-C, whereas E2F1 depletion prevents their expression. E2F1-dependent receptor induction is crucial for tumor cells to enhance formation of capillary tubes and neovascularization in mice. We further provide evidence for a positive feedback loop between E2F1 and VEGFR-3 signaling to stimulate pro-angiogenic platelet-derived growth factor B (PDGF-B). E2F1 or VEGFR-3 knockdown results in reduced PDGF-B levels, while the coexpression synergistically upregulates promoter activity and endogenous protein expression of PDGF-B. Our findings delineate an as yet unrecognized function of E2F1 as enhancer of angiogenesis via regulation of VEGF-C/VEGFR-3 signaling in tumors to cooperatively activate PDGF-B expression. Targeting this pathway might be reasonable to complement standard anti-angiogenic treatment of cancers with deregulated E2F1.


The Journal of Pathology | 2014

Association of RHAMM with E2F1 promotes tumour cell extravasation by transcriptional up-regulation of fibronectin.

Claudia Meier; Alf Spitschak; Kerstin Abshagen; Shailendra K. Gupta; Joel M. Mor; Olaf Wolkenhauer; Jörg Haier; Brigitte Vollmar; Vijay Alla; Brigitte M. Pützer

Dissemination of cancer cells from primary to distant sites is a complex process; little is known about the genesis of metastatic changes during disease development. Here we show that the metastatic potential of E2F1‐dependent circulating tumour cells (CTCs) relies on a novel function of the hyaluronan‐mediated motility receptor RHAMM. E2F1 directly up‐regulates RHAMM, which in turn acts as a co‐activator of E2F1 to stimulate expression of the extracellular matrix protein fibronectin. Enhanced fibronectin secretion links E2F1/RHAMM transcriptional activity to integrin‐β1–FAK signalling associated with cytoskeletal remodelling and enhanced tumour cell motility. RHAMM depletion abolishes fibronectin expression and cell transmigration across the endothelial layer in E2F1‐activated cells. In a xenograft model, knock‐down of E2F1 or RHAMM in metastatic cells protects the liver parenchyma of mice against extravasation of CTCs, whereas the number of transmigrated cells increases in response to E2F1 induction. Expression data from clinical tissue samples reveals high E2F1 and RHAMM levels that closely correlate with malignant progression. These findings suggest a requirement for RHAMM in late‐stage metastasis by a mechanism involving cooperative stimulation of fibronectin, with a resultant tumourigenic microenvironment important for enhanced extravasation and distant organ colonization. Therefore, stimulation of the E2F1–RHAMM axis in aggressive cancer cells is of high clinical significance. Targeting RHAMM may represent a promising approach to avoid E2F1‐mediated metastatic dissemination. Copyright


Nucleic Acids Research | 2016

Epigenetic factor EPC1 is a master regulator of DNA damage response by interacting with E2F1 to silence death and activate metastasis-related gene signatures

Yajie Wang; Vijay Alla; Deborah Goody; Shailendra K. Gupta; Alf Spitschak; Olaf Wolkenhauer; Brigitte M. Pützer; David Engelmann

Transcription factor E2F1 is a key regulator of cell proliferation and apoptosis. Recently, it has been shown that aberrant E2F1 expression often detectable in advanced cancers contributes essentially to cancer cell propagation and characterizes the aggressive potential of a tumor. Conceptually, this requires a subset of malignant cells capable of evading apoptotic death through anticancer drugs. The molecular mechanism by which the pro-apoptotic activity of E2F1 is antagonized is widely unclear. Here we report a novel function for EPC1 (enhancer of polycomb homolog 1) in DNA damage protection. Depletion of EPC1 potentiates E2F1-mediated apoptosis in response to genotoxic treatment and abolishes tumor cell motility. We found that E2F1 directly binds to the EPC1 promoter and EPC1 vice versa physically interacts with bifunctional E2F1 to modulate its transcriptional activity in a target gene-specific manner. Remarkably, nuclear-colocalized EPC1 activates E2F1 to upregulate the expression of anti-apoptotic survival genes such as BCL-2 or Survivin/BIRC5 and inhibits death-inducing targets. The uncovered cooperativity between EPC1 and E2F1 triggers a metastasis-related gene signature in advanced cancers that predicts poor patient survival. These findings unveil a novel oncogenic function of EPC1 for inducing the switch into tumor progression-relevant gene expression that may help to set novel therapies.


Nature Communications | 2017

Unraveling a tumor type-specific regulatory core underlying E2F1-mediated epithelial-mesenchymal transition to predict receptor protein signatures

Faiz M. Khan; Stephan Marquardt; Shailendra K. Gupta; Susanne Knoll; Ulf Schmitz; Alf Spitschak; David Engelmann; Julio Vera; Olaf Wolkenhauer; Brigitte M. Pützer

Cancer is a disease of subverted regulatory pathways. In this paper, we reconstruct the regulatory network around E2F, a family of transcription factors whose deregulation has been associated to cancer progression, chemoresistance, invasiveness, and metastasis. We integrate gene expression profiles of cancer cell lines from two E2F1-driven highly aggressive bladder and breast tumors, and use network analysis methods to identify the tumor type-specific core of the network. By combining logic-based network modeling, in vitro experimentation, and gene expression profiles from patient cohorts displaying tumor aggressiveness, we identify and experimentally validate distinctive, tumor type-specific signatures of receptor proteins associated to epithelial–mesenchymal transition in bladder and breast cancer. Our integrative network-based methodology, exemplified in the case of E2F1-induced aggressive tumors, has the potential to support the design of cohort- as well as tumor type-specific treatments and ultimately, to fight metastasis and therapy resistance.Deregulation of E2F family transcription factors is associated with cancer progression and metastasis. Here, the authors construct a map of the regulatory network around the E2F family, and using gene expression profiles, identify tumour type-specific regulatory cores and receptor expression signatures associated with epithelial-mesenchymal transition in bladder and breast cancer.


Molecular Cancer | 2017

MiR-182 promotes cancer invasion by linking RET oncogene activated NF-κB to loss of the HES1/Notch1 regulatory circuit

Alf Spitschak; Claudia Meier; Bhavani S. Kowtharapu; David Engelmann; Brigitte M. Pützer

BackgroundDominant-activating mutations in the RET proto-oncogene, a receptor tyrosine kinase, are responsible for the development of medullary thyroid carcinoma (MTC) and causative for multiple endocrine neoplasia (MEN) type 2A and 2B. These tumors are highly aggressive with a high propensity for early metastasis and chemoresistance. This attribute makes this neoplasia an excellent model for probing mechanisms underlying cancer progression.MethodsThe expression level of miR-182 was measured in MTC tumor specimens and in TT cells by real-time RT-PCR. TT cells and modified NThy-ori 3.1 that stably express RETM918T were used to investigate RET-dependent regulation of miR-182. Identification and validation of miR-182 targets and pathways was accomplished with luciferase assays, qRT-PCR, Western blotting and immunofluorescence. In vitro, overexpression and knockdown experiments were carried out to examine the impact of miR-182 and HES1 on invasion and migration.ResultsWe found that miR-182 expression is significantly upregulated in MTC patient samples and tumor-derived cell lines harboring mutated RET. Inhibition of RET oncogenic signaling through a dominant-negative RET∆TK mutant in TT cells reduces miR-182, whereas overexpression of RETM918T in NThy-ori 3.1 cells increases miR-182 levels. We further show that overexpression of this miRNA in NThy.miR-182 cells promotes the invasive and migratory properties without affecting cell proliferation. MiR-182 is upregulated after RET induced NF-κB translocation into the nucleus via binding of NF-κB to the miR-182 promoter. Database analysis revealed that HES1, a repressor of the Notch pathway, is a target of miR-182, whose upregulation correlates with loss of HES1 transcription in MTC tissue samples and mutant RET cell lines. Moreover, we demonstrated that the 3′UTR of the HES1 mRNA bearing the targeting sequence for miR-182 clearly reduced luciferase reporter activity in cells expressing miR-182. Decreased expression of HES1 promotes migration by upregulating Notch1 inhibitor Deltex1 and consequent repression of Notch1.ConclusionWe demonstrate a novel mechanism for MTC aggressiveness in which mutated RET/NF-κB-driven expression of miR-182 impedes HES1 activation in a negative feedback loop. This observation might open new possibilities to treat RET oncogene associated metastatic cancer.


Clinical Endocrinology | 2011

Germline RET sequence variation I852M and occult medullary thyroid cancer: harmless polymorphism or causative mutation?

Andreas Machens; Alf Spitschak; Kerstin Lorenz; Brigitte M. Pützer; Henning Dralle

Objective  Rearranged during transfection (RET) gene analysis, widely used to identify carriers at risk of medullary thyroid cancer (MTC), occasionally uncovers novel sequence ‘variants of unknown clinical significance’ including RET I852M. This study aimed to clarify whether RET I852M represents a harmless polymorphism or a pathogenic mutation.


Theranostics | 2018

MiR-205-5p and miR-342-3p cooperate in the repression of the E2F1 transcription factor in the context of anticancer chemotherapy resistance

Xin Lai; Shailendra K. Gupta; Ulf Schmitz; Stephan Marquardt; Susanne Knoll; Alf Spitschak; Olaf Wolkenhauer; Brigitte M. Pützer; Julio Vera

High rates of lethal outcome in tumour metastasis are associated with the acquisition of invasiveness and chemoresistance. Several clinical studies indicate that E2F1 overexpression across high-grade tumours culminates in unfavourable prognosis and chemoresistance in patients. Thus, fine-tuning the expression of E2F1 could be a promising approach for treating patients showing chemoresistance. Methods: We integrated bioinformatics, structural and kinetic modelling, and experiments to study cooperative regulation of E2F1 by microRNA (miRNA) pairs in the context of anticancer chemotherapy resistance. Results: We showed that an enhanced E2F1 repression efficiency can be achieved in chemoresistant tumour cells through two cooperating miRNAs. Sequence and structural information were used to identify potential miRNA pairs that can form tertiary structures with E2F1 mRNA. We then employed molecular dynamics simulations to show that among the identified triplexes, miR-205-5p and miR-342-3p can form the most stable triplex with E2F1 mRNA. A mathematical model simulating the E2F1 regulation by the cooperative miRNAs predicted enhanced E2F1 repression, a feature that was verified by in vitro experiments. Finally, we integrated this cooperative miRNA regulation into a more comprehensive network to account for E2F1-related chemoresistance in tumour cells. The network model simulations and experimental data indicate the ability of enhanced expression of both miR-205-5p and miR-342-3p to decrease tumour chemoresistance by cooperatively repressing E2F1. Conclusions: Our results suggest that pairs of cooperating miRNAs could be used as potential RNA therapeutics to reduce E2F1-related chemoresistance.


Seminars in Cancer Biology | 2018

Emerging functional markers for cancer stem cell-based therapies: Understanding signaling networks for targeting metastasis

Stephan Marquardt; Manish Solanki; Alf Spitschak; Julio Vera; Brigitte M. Pützer

Metastasis is one of the most challenging issues in cancer patient management, and effective therapies to specifically target disease progression are missing, emphasizing the urgent need for developing novel anti-metastatic therapeutics. Cancer stem cells (CSCs) gained fast attention as a minor population of highly malignant cells within liquid and solid tumors that are responsible for tumor onset, self-renewal, resistance to radio- and chemotherapies, and evasion of immune surveillance accelerating recurrence and metastasis. Recent progress in the identification of their phenotypic and molecular characteristics and interactions with the tumor microenvironment provides great potential for the development of CSC-based targeted therapies and radical improvement in metastasis prevention and cancer patient prognosis. Here, we report on newly uncovered signaling mechanisms controlling CSCs aggressiveness and treatment resistance, and CSC-specific agents and molecular therapeutics, some of which are currently under investigation in clinical trials, gearing towards decisive functional CSC intrinsic or surface markers. One special research focus rests upon subverted regulatory pathways such as insulin-like growth factor 1 receptor signaling and its interactors in metastasis-initiating cell populations directly related to the gain of stem cell- and EMT-associated properties, as well as key components of the E2F transcription factor network regulating metastatic progression, microenvironmental changes, and chemoresistance. In addition, the study provides insight into systems biology tools to establish complex molecular relationships behind the emergence of aggressive phenotypes from high-throughput data that rely on network-based analysis and their use to investigate immune escape mechanisms or predict clinical outcome-relevant CSC receptor signaling signatures. We further propose that customized vector technologies could drastically enhance systemic drug delivery to target sites, and summarize recent progress and remaining challenges. This review integrates available knowledge on CSC biology, computational modeling approaches, molecular targeting strategies, and delivery techniques to envision future clinical therapies designed to conquer metastasis-initiating cells.


Cancer Research | 2016

Abstract B26: Epigenetic master regulator EPC1 is a decisive factor for E2F1 to silence cell death and activate metastatic gene signatures in response to DNA damage

David Engelmann; Yajie Wang; Vijay Alla; Deborah Goody; Shailendra K. Gupta; Alf Spitschak; Brigitte M. Pützer

The transcription factor E2F1 is a key regulator of cell proliferation and apoptosis. Recently, it has been shown that aberrant E2F1 expression often detectable in advanced-stage metastatic and chemoresistant cancers contributes essentially to malignant progression and characterizes the aggressive potential of a tumor. Conceptually, this requires a subset of malignant cells capable of evading apoptotic death through anticancer drugs. The molecular mechanism by which the pro-apoptotic activity of E2F1 is antagonized is widely unclear. Here we report a novel function for enhancer of polycomb homolog 1 (EPC1) in DNA damage protection. Depletion of EPC1 potentiates E2F1-mediated apoptosis in response to genotoxic treatment and abolishes tumor cell motility. We found that E2F1 directly binds and activates the EPC1 promoter and EPC1 vice versa physically interacts with bifunctional E2F1 to modulate its transcriptional activity in a target gene-specific manner. Remarkably, nuclear-colocalized EPC1 activates E2F1 to upregulate the expression of anti-apoptotic survival genes such as BCL-2 or Survivin and inhibits death-inducing targets including p27 and Bim. Mechanistically, we observed that EPC1 is required for recruitment of Tip60, a subunit of the NuA4 acetyltransferase complex, to E2F sites of the Bcl-2 promoter, causing increased activating histone acetylation levels. In contrast, ablation of EPC1 removes the PRC2 component EZH2 from the p27 promoter, resulting in decreased histone methylation for E2F1-mediated gene activation. In this scenario, EPC1 acts as a crucial bridging factor to connect E2F1 with essential components of the chromatin remodeling complexes Nu4A and PRC2. The uncovered cooperativity between EPC1 and E2F1 triggers a gene signature in advanced cancers that predicts metastatic behavior and poor patient survival. These findings unveil a novel oncogenic function of EPC1 for inducing the switch into tumor progression-relevant gene expression that may help to set novel therapies. This work was supported by German Cancer Aid, Dr. Mildred Scheel Stiftung (109801 to B.M.P. and D.E.) and German Federal Ministry of Education and Research (BMBF) as part of the eBio:SysMet project (0316171 to B.M.P.). Note: This abstract was not presented at the conference. Citation Format: David Engelmann, Yajie Wang, Vijay Alla, Deborah Goody, Shailendra K. Gupta, Alf Spitschak, Brigitte M. Putzer. Epigenetic master regulator EPC1 is a decisive factor for E2F1 to silence cell death and activate metastatic gene signatures in response to DNA damage. [abstract]. In: Proceedings of the AACR Special Conference on Tumor Metastasis; 2015 Nov 30-Dec 3; Austin, TX. Philadelphia (PA): AACR; Cancer Res 2016;76(7 Suppl):Abstract nr B26.

Collaboration


Dive into the Alf Spitschak's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge