Britt I. Drögemöller
University of British Columbia
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Britt I. Drögemöller.
The New England Journal of Medicine | 2016
Maja Tarailo-Graovac; Casper Shyr; Colin Ross; Gabriella A. Horvath; Ramona Salvarinova; Xin C. Ye; Lin Hua Zhang; Amit P. Bhavsar; Jessica Lee; Britt I. Drögemöller; Mena Abdelsayed; Majid Alfadhel; Linlea Armstrong; Matthias R. Baumgartner; Patricie Burda; Mary B. Connolly; Jessie M. Cameron; Michelle Demos; Tammie Dewan; Janis Dionne; A. Mark Evans; Jan M. Friedman; Ian Garber; Suzanne Lewis; Jiqiang Ling; Rupasri Mandal; Andre Mattman; Margaret L. McKinnon; Aspasia Michoulas; Daniel Metzger
BACKGROUND Whole-exome sequencing has transformed gene discovery and diagnosis in rare diseases. Translation into disease-modifying treatments is challenging, particularly for intellectual developmental disorder. However, the exception is inborn errors of metabolism, since many of these disorders are responsive to therapy that targets pathophysiological features at the molecular or cellular level. METHODS To uncover the genetic basis of potentially treatable inborn errors of metabolism, we combined deep clinical phenotyping (the comprehensive characterization of the discrete components of a patients clinical and biochemical phenotype) with whole-exome sequencing analysis through a semiautomated bioinformatics pipeline in consecutively enrolled patients with intellectual developmental disorder and unexplained metabolic phenotypes. RESULTS We performed whole-exome sequencing on samples obtained from 47 probands. Of these patients, 6 were excluded, including 1 who withdrew from the study. The remaining 41 probands had been born to predominantly nonconsanguineous parents of European descent. In 37 probands, we identified variants in 2 genes newly implicated in disease, 9 candidate genes, 22 known genes with newly identified phenotypes, and 9 genes with expected phenotypes; in most of the genes, the variants were classified as either pathogenic or probably pathogenic. Complex phenotypes of patients in five families were explained by coexisting monogenic conditions. We obtained a diagnosis in 28 of 41 probands (68%) who were evaluated. A test of a targeted intervention was performed in 18 patients (44%). CONCLUSIONS Deep phenotyping and whole-exome sequencing in 41 probands with intellectual developmental disorder and unexplained metabolic abnormalities led to a diagnosis in 68%, the identification of 11 candidate genes newly implicated in neurometabolic disease, and a change in treatment beyond genetic counseling in 44%. (Funded by BC Childrens Hospital Foundation and others.).
Current Pharmacogenomics and Personalized Medicine | 2011
Louise Warnich; Britt I. Drögemöller; Michael Sean Pepper; Collet Dandara; Galen Wright
South Africa, like many other developing countries, stands to benefit from novel diagnostics and drugs developed by pharmacogenomics guidance due to high prevalence of disease burden in the region. This includes both communicable (e.g., HIV/AIDS and tuberculosis) and non-communicable (e.g., diabetes and cardiovascular) diseases. For example, although only 0.7% of the world’s population lives in South Africa, the country carries 17% of the global HIV/AIDS burden and 5% of the global tuberculosis burden. Nobel Peace Prize Laureate Archbishop Emeritus Desmond Tutu has coined the term Rainbow Nation, referring to a land of wealth in its many diverse peoples and cultures. It is now timely and necessary to reflect on how best to approach new genomics biotechnologies in a manner that carefully considers the public health needs and extant disease burden in the region. The aim of this paper is to document and review the advances in pharmacogenomics in South Africa and importantly, to evaluate the direction that future research should take. Previous research has shown that the populations in South Africa exhibit unique allele frequencies and novel genetic variation in pharmacogenetically relevant genes, often differing from other African and global populations. The high level of genetic diversity, low linkage disequilibrium and the presence of rare variants in these populations question the feasibility of the use of current commercially available genotyping platforms, and may partially account for genotype-phenotype discordance observed in past studies. However, the employment of high throughput technologies for genomic research, within the context of large clinical trials, combined with interdisciplinary studies and appropriate regulatory guidelines, should aid in acceleration of pharmacogenomic discoveries in high priority therapeutic areas in South Africa. Finally, we suggest that projects such as the H3Africa Initiative, the SAHGP and PGENI should play an integral role in the coordination of genomic research in South Africa, but also other African countries, by providing infrastructure and capital to local researchers, as well as providing aid in addressing the computational and statistical bottlenecks encountered at present.
Pharmacogenomics | 2010
Britt I. Drögemöller; Galen Wright; Dana Niehaus; Liezl Koen; Stefanie Malan; Danielle M Da Silva; Renate Hillermann–Rebello; Anthony M La Grange; Mauritz Venter; Louise Warnich
AIMS This study was aimed at elucidating the common sequence variation present in the CYP2C19 gene within the South African Xhosa population and comparing it with the Cape Mixed Ancestry (CMA) population for possible future pharmacogenetic applications. MATERIALS & METHODS Common sequence variation was identified through the resequencing of 15 Xhosa individuals. The detected variants were prioritized for genotyping in an additional 85 Xhosa and 75 CMA individuals, while 5 -upstream variants were analyzed using dual luciferase reporter assays. RESULTS Resequencing of the Xhosa population revealed 30 variants, including the novel CYP2C19*27 and CYP2C19*28 alleles. CYP2C19*27, characterized by -1041G>A, caused a twofold decrease in luciferase activity, while CYP2C19*28 is characterized by the nonsynonymous V374I variant. In addition, the previously characterized variants, CYP2C19*2, CYP2C19*9 and CYP2C19*17, were present in both populations, while CYP2C19*3 was only observed in the CMA population. CONCLUSION Our data demonstrate that both the Xhosa and CMA populations exhibit unique genetic profiles that could influence the outcome of drug therapy in these populations.
Pharmacogenetics and Genomics | 2013
Britt I. Drögemöller; Galen Wright; Dana Niehaus; Robin Emsley; Louise Warnich
Introduction Because of the unmet needs of current pharmacotherapy for schizophrenia, antipsychotic pharmacogenetic research is of utmost importance. However, to date, few clinically applicable antipsychotic pharmacogenomic alleles have been identified. Nonetheless, next-generation sequencing technologies are expected to aid in the identification of clinically significant variants for this complex phenotype. The aim of this study was therefore to critically examine the ability of next-generation sequencing technologies to reliably detect variation present in pharmacogenes. Materials and methods Candidate antipsychotic pharmacogenes and very important pharmacogenes were identified from the literature and the Pharmacogenomics Knowledgebase. Thereafter, the percentage sequence similarity observed between these genes and their corresponding pseudogenes and paralogues, as well as the percentage low-complexity sequence and GC content of each gene, was calculated. These sequence attributes were subsequently compared with the ‘inaccessible’ regions of these genes as described by the 1000 Genomes Project. Results It was found that the percentage ‘inaccessible genome’ correlated well with GC content (P=9.96×10−5), low-complexity sequence (P=0.0002) and the presence of pseudogenes/paralogues (P=8.02×10−7). In addition, it was found that many of the pharmacogenes were not ideally suited to next-generation sequencing because of these genomic complexities. These included the CYP and HLA genes, both of which are of importance to many fields of pharmacogenetics. Conclusion Current short read sequencing technologies are unable to comprehensively capture the variation in all pharmacogenes. Therefore, until high-throughput sequencing technologies advance further, it may be necessary to combine next-generation sequencing with other genotyping strategies.
Pharmacogenomics | 2011
Britt I. Drögemöller; Galen Wright; Dana Niehaus; Robin Emsley; Louise Warnich
Africa suffers from a high burden of disease; nonetheless, it has been one of the most under-represented continents with regard to genomic research. It can be argued that this disproportionate research is related to the fact that the genome architecture of African individuals is poorly suited to SNP-based genome-wide association studies, given existing genotyping platforms. However, this argument is no longer plausible with the arrival of next-generation sequencing technologies, which allow for the analysis of entire genomes. Using pharmacogenes to critically examine the merit of next-generation sequencing technologies in pharmacogenomics, we found a substantial amount of novel/uncharacterized variation, which was predicted to alter protein function. This variation was predominantly observed in African individuals, emphasizing the benefit of next-generation sequencing technologies specifically for these individuals. We also observed an improvement in the reliability of sequencing technologies in a relatively short time. Therefore, as sequencing technologies develop and decrease in cost, the ability to reliably detect variation will improve and these technologies will begin to replace other less comprehensive genotyping assays.
European Journal of Human Genetics | 2016
Sylvie Langlois; Maja Tarailo-Graovac; Bryan Sayson; Britt I. Drögemöller; Anne Swenerton; Colin Ross; Wyeth W. Wasserman; Clara van Karnebeek
PEHO syndrome (OMIM no. 260565) is characterized by myoclonic jerking and infantile spasms, profound psychomotor retardation with the absence of motor milestones and speech, absence or early loss of visual fixation with atrophy of optic discs by 2 years of age and progressive brain atrophy on neuroimaging. We describe the results of a genomic study of a girl with PEHO syndrome and review the literature on cases with a disease-causing variant in the same gene. Exome sequencing of the index and unaffected parents followed by Sanger confirmation identified nine candidate genes harboring nonsynonymous rare variants identified by trio whole-exome sequencing. The de novo variant, a missense variant (c.296C>T, p.(T99M)), affecting the motor domain of KIF1A was considered the pathogenic mutation. The literature review revealed 24 cases with disease-causing variants in the motor domain of KIF1A, of which three met all the criteria for PEHO syndrome and an additional patient with incomplete clinical data met four of the five criteria. If the criteria were modified to include cases with any convulsive disorder and less profound intellectual disability, a total of six patients met all five of the criteria, three patients met four of the criteria and six met three of the criteria. Our results indicate that the molecular basis for PEHO syndrome, in at least a subset of patients, is a dominant KIF1A variant affecting the motor domain of the protein. Variable expressivity is seen with recurrent variants causing the full phenotype of PEHO syndrome in some patients and in other patients, a partial or milder PEHO phenotype.
Pharmacogenomics | 2014
Britt I. Drögemöller; Dana Niehaus; Bonginkosi Chiliza; Lize van der Merwe; Laila Asmal; Anil K. Malhotra; Galen Wright; Robin Emsley; Louise Warnich
AIM Many antipsychotic pharmacogenetics studies have been performed examining candidate genes or known variation; however, our understanding of the genetic factors involved in antipsychotic pharmacogenetic traits remains limited. MATERIALS & METHODS A well-characterized cohort of first-episode schizophrenia (FES) patients was used to identify a subset of nonresponders and responders to antipsychotic treatment for exome sequencing (n = 11). The variation observed in the responders and nonresponders was subsequently compared and a prioritization strategy was employed to identify variants for genotyping in the entire FES cohort (n = 103) as well as an additional Xhosa schizophrenia cohort (n = 222). RESULTS Examination of coding variation revealed a potential role for rare loss-of-function variants in treatment response outcomes. One variant, rs11368509, was found to be weakly associated with better treatment outcomes in the FES cohort (p = 0.057) and the Xhosa schizophrenia cohort (p = 0.016). In addition, the majority of the loss-of-function variation that was considered likely to be involved in antipsychotic treatment response was either novel or rare in Asian and European populations. CONCLUSION This pilot study has highlighted the importance of exome sequencing for antipsychotic pharmacogenomics studies, particularly in African individuals. Furthermore, the results emphasize once again the complexity of antipsychotic pharmacogenomics and the need for future research.
Pharmacogenetics and Genomics | 2016
Britt I. Drögemöller; Robin Emsley; Bonginkosi Chiliza; van der Merwe L; Galen Wright; Daya M; Hoal E; Malhotra Ak; Lencz T; Robinson Dg; Zhang Jp; Laila Asmal; Niehaus Dj; Louise Warnich
Background Although antipsychotics are integral to the treatment of schizophrenia, drug efficacy varies between patients. Although it has been shown that antipsychotic treatment response outcomes are heritable, our understanding of the genetic factors that are involved remains incomplete. Therefore, this study aims to use an unbiased scan of the genome to identify the genetic variants contributing toward antipsychotic treatment response outcomes. Materials and methods This study utilized whole-exome sequencing of patients on extreme ends of the treatment response spectrum (n=11) in combination with results from previous antipsychotic studies to design a panel of variants that were genotyped in two well-characterized first-episode schizophrenia cohorts (n=103 and 87). Association analyses were carried out to determine whether these variants were significantly associated with antipsychotic treatment response outcomes. Results Association analyses in the discovery cohort identified two nonsynonymous variants that were significantly associated with antipsychotic treatment response outcomes (P<2.7×10–5), which were also significantly associated with the corresponding treatment response outcome in an independent replication cohort. Computational approaches showed that both of these nonsynonymous variants – rs13025959 in MYO7B (E1647D) and rs10380 in MTRR (H622Y) – were predicted to impair the functioning of their corresponding protein products. Conclusion The use of whole-exome sequencing in a subset of patients from a well-characterized cohort of first-episode schizophrenia patients, for whom longitudinal depot treatment response data were available, allowed for (i) the removal of confounding factors related to treatment progression and compliance and (ii) the identification of two genetic variants that have not been associated previously with antipsychotic treatment response outcomes and whose results were applicable across different classes of antipsychotics. Although the genes that are affected by these variants are involved in pathways that have been related previously to antipsychotic treatment outcomes, the identification of these novel genes will play an important role in improving our understanding of the specific variants involved in antipsychotic treatment response outcomes.
JAMA Oncology | 2017
Britt I. Drögemöller; Jose Gerard Monzon; Amit P. Bhavsar; Adrienne E. Borrie; Beth Brooks; Galen Wright; Geoffrey Liu; Daniel John Renouf; Christian Kollmannsberger; Philippe L. Bedard; Folefac Aminkeng; Ursula Amstutz; Claudette Hildebrand; Erandika P. Gunaretnam; Carol Critchley; Zhuo Chen; Liam R. Brunham; Michael R. Hayden; Colin Ross; Karen A. Gelmon; Bruce Carleton
Importance Cisplatin-induced ototoxic effects are an important complication that affects testicular cancer survivors as a consequence of treatment. The identification of genetic variants associated with this adverse drug reaction will further our mechanistic understanding of its development and potentially lead to strategies to prevent ototoxic effects. Objective To identify the genetic variants associated with cisplatin-induced ototoxic effects in adult testicular cancer patients. Design, Setting, and Participants This retrospective study was performed by the Canadian Pharmacogenomics Network for Drug Safety using patients recruited from 5 adult oncology treatment centers across Canada. Male patients who were 17 years or older, diagnosed with germ cell testicular cancer, and previously treated with cisplatin-based chemotherapy were recruited from July 2009 to April 2013 using active surveillance methodology. Cisplatin-induced ototoxic effects were independently diagnosed by 2 audiologists. Patients were genotyped for 7907 variants using a custom pharmacogenomic array. Logistic regression was used to identify genetic variants that were significantly associated with ototoxic effects. The validity of these findings was confirmed through independent replication and cell-based functional assays. Exposures Cisplatin-based chemotherapy. Main Outcomes and Measures Cisplatin-induced ototoxic effects. Results After exclusions, 188 patients (median [interquartile range] age, 31 [24-39] years) were enrolled in this study to form the discovery and replication cohorts. Association and fine-mapping analyses identified a protein-coding variant, rs4788863 in SLC16A5, that was associated with protection against cisplatin-induced ototoxic effects in 2 independent cohorts (combined cohort: odds ratio, 0.06; 95% CI, 0.02-0.22; P = 2.17 × 10−7). Functional validation of this transporter gene revealed that in vitro SLC16A5–silencing altered cellular responses to cisplatin treatment, supporting a role for SLC16A5 in the development of cisplatin-induced ototoxic effects. These results were further supported by the literature, which provided confirmatory evidence for the role that SLC16A5 plays in hearing. Conclusions and Relevance This study has identified a novel association between protein-coding variation in SLC16A5 and cisplatin-induced ototoxic effects. These findings have provided insight into the molecular mechanisms of this adverse drug reaction in adult patients with germ cell testicular cancer. Given that previous studies have shown that cimetidine, an SLC16A5-inhibitor, prevents murine cisplatin-induced ototoxic effects, the findings from this study have important implications for otoprotectant strategies in humans.
Molecular Genetics and Metabolism | 2016
Saikat Santra; Jessie M. Cameron; Casper Shyr; Lin-Hua Zhang; Britt I. Drögemöller; Colin Ross; Wyeth W. Wasserman; Ron A. Wevers; Richard J. Rodenburg; Girish Gupte; Mary Anne Preece; Clara van Karnebeek
We report a patient from a consanguineous family who presented with transient acute liver failure and biochemical patterns suggestive of disturbed urea cycle and mitochondrial function, for whom conventional genetic and metabolic investigations for acute liver failure failed to yield a diagnosis. Whole exome sequencing revealed a homozygous 12-bp deletion in PCK1 (MIM 614168) encoding cytosolic phosphoenolpyruvate carboxykinase (PEPCK); enzymatic studies subsequently confirmed its pathogenic nature. We propose that PEPCK deficiency should be considered in the young child with unexplained liver failure, especially where there are marked, accumulations of TCA cycle metabolites on urine organic acid analysis and/or an amino acid profile with hyperammonaemia suggestive of a proximal urea cycle defect during the acute episode. If suspected, intravenous administration of dextrose should be initiated. Long-term management comprising avoidance of fasting with the provision of a glucose polymer emergency regimen for illness management may be sufficient to prevent future episodes of liver failure. This case report provides further insights into the (patho-)physiology of energy metabolism, confirming the power of genomic analysis of unexplained biochemical phenotypes.