Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Maja Tarailo-Graovac is active.

Publication


Featured researches published by Maja Tarailo-Graovac.


Current protocols in human genetics | 2009

Using RepeatMasker to Identify Repetitive Elements in Genomic Sequences

Maja Tarailo-Graovac; Nansheng Chen

RepeatMasker is a popular software tool widely used in computational genomics to identify, classify, and mask repetitive elements, including low‐complexity sequences and interspersed repeats. RepeatMasker searches for repetitive sequence by aligning the input genome sequence against a library of known repeats, such as Repbase. Here, we describe two Basic Protocols that provide detailed guidelines on how to use RepeatMasker, either via the Web interface or command‐line Unix/Linux system, to analyze repetitive elements in genomic sequences. Sequence comparisons in RepeatMasker are usually performed by the alignment program cross_match, which requires significant processing time for larger sequences. An Alternate Protocol describes how to reduce the processing time using an alternative alignment program, such as WU‐BLAST. Further, the advantages, limitations, and known bugs of the software are discussed. Finally, guidelines for understanding the results are provided. Curr. Protoc. Bioinform. 25:4.10.1‐4.10.14.


The New England Journal of Medicine | 2016

Exome Sequencing and the Management of Neurometabolic Disorders

Maja Tarailo-Graovac; Casper Shyr; Colin Ross; Gabriella A. Horvath; Ramona Salvarinova; Xin C. Ye; Lin Hua Zhang; Amit P. Bhavsar; Jessica Lee; Britt I. Drögemöller; Mena Abdelsayed; Majid Alfadhel; Linlea Armstrong; Matthias R. Baumgartner; Patricie Burda; Mary B. Connolly; Jessie M. Cameron; Michelle Demos; Tammie Dewan; Janis Dionne; A. Mark Evans; Jan M. Friedman; Ian Garber; Suzanne Lewis; Jiqiang Ling; Rupasri Mandal; Andre Mattman; Margaret L. McKinnon; Aspasia Michoulas; Daniel Metzger

BACKGROUND Whole-exome sequencing has transformed gene discovery and diagnosis in rare diseases. Translation into disease-modifying treatments is challenging, particularly for intellectual developmental disorder. However, the exception is inborn errors of metabolism, since many of these disorders are responsive to therapy that targets pathophysiological features at the molecular or cellular level. METHODS To uncover the genetic basis of potentially treatable inborn errors of metabolism, we combined deep clinical phenotyping (the comprehensive characterization of the discrete components of a patients clinical and biochemical phenotype) with whole-exome sequencing analysis through a semiautomated bioinformatics pipeline in consecutively enrolled patients with intellectual developmental disorder and unexplained metabolic phenotypes. RESULTS We performed whole-exome sequencing on samples obtained from 47 probands. Of these patients, 6 were excluded, including 1 who withdrew from the study. The remaining 41 probands had been born to predominantly nonconsanguineous parents of European descent. In 37 probands, we identified variants in 2 genes newly implicated in disease, 9 candidate genes, 22 known genes with newly identified phenotypes, and 9 genes with expected phenotypes; in most of the genes, the variants were classified as either pathogenic or probably pathogenic. Complex phenotypes of patients in five families were explained by coexisting monogenic conditions. We obtained a diagnosis in 28 of 41 probands (68%) who were evaluated. A test of a targeted intervention was performed in 18 patients (44%). CONCLUSIONS Deep phenotyping and whole-exome sequencing in 41 probands with intellectual developmental disorder and unexplained metabolic abnormalities led to a diagnosis in 68%, the identification of 11 candidate genes newly implicated in neurometabolic disease, and a change in treatment beyond genetic counseling in 44%. (Funded by BC Childrens Hospital Foundation and others.).


Nature Genetics | 2016

NANS-mediated synthesis of sialic acid is required for brain and skeletal development

Clara van Karnebeek; Luisa Bonafé; Xiao-Yan Wen; Maja Tarailo-Graovac; Sara Balzano; Beryl Royer-Bertrand; Angel Ashikov; Livia Garavelli; Isabella Mammi; Licia Turolla; Catherine Breen; Dian Donnai; Valérie Cormier-Daire; Delphine Héron; Gen Nishimura; Shinichi Uchikawa; Belinda Campos-Xavier; Antonio Rossi; Thierry Hennet; Koroboshka Brand-Arzamendi; Jacob Rozmus; Keith Harshman; Brian J. Stevenson; Enrico Girardi; Giulio Superti-Furga; Tammie Dewan; Alissa Collingridge; Jessie Halparin; Colin Ross; Margot I. Van Allen

We identified biallelic mutations in NANS, the gene encoding the synthase for N-acetylneuraminic acid (NeuNAc; sialic acid), in nine individuals with infantile-onset severe developmental delay and skeletal dysplasia. Patient body fluids showed an elevation in N-acetyl-D-mannosamine levels, and patient-derived fibroblasts had reduced NANS activity and were unable to incorporate sialic acid precursors into sialylated glycoproteins. Knockdown of nansa in zebrafish embryos resulted in abnormal skeletal development, and exogenously added sialic acid partially rescued the skeletal phenotype. Thus, NANS-mediated synthesis of sialic acid is required for early brain development and skeletal growth. Normal sialylation of plasma proteins was observed in spite of NANS deficiency. Exploration of endogenous synthesis, nutritional absorption, and rescue pathways for sialic acid in different tissues and developmental phases is warranted to design therapeutic strategies to counteract NANS deficiency and to shed light on sialic acid metabolism and its implications for human nutrition.


Orphanet Journal of Rare Diseases | 2015

The genotypic and phenotypic spectrum of PIGA deficiency

Maja Tarailo-Graovac; Graham Sinclair; Sylvia Stockler-Ipsiroglu; Margot I. Van Allen; Jacob Rozmus; Casper Shyr; Roberta Biancheri; Tracey Oh; Bryan Sayson; Mirafe Lafek; Colin Ross; Wendy P. Robinson; Wyeth W. Wasserman; Andrea Rossi; Clara van Karnebeek

BackgroundPhosphatidylinositol glycan biosynthesis class A protein (PIGA) is one of the enzymes involved in the biosynthesis of glycosylphosphatidylinositol (GPI) anchor proteins, which function as enzymes, adhesion molecules, complement regulators and co-receptors in signal transduction pathways. Until recently, only somatic PIGA mutations had been reported in patients with paroxysmal nocturnal hemoglobinuria (PNH), while germline mutations had not been observed, and were suspected to result in lethality. However, in just two years, whole exome sequencing (WES) analyses have identified germline PIGA mutations in male patients with XLIDD (X-linked intellectual developmental disorder) with a wide spectrum of clinical presentations.Methods and resultsHere, we report on a new missense PIGA germline mutation [g.15342986C>T (p.S330N)] identified via WES followed by Sanger sequencing, in a Chinese male infant presenting with developmental arrest, infantile spasms, a pattern of lesion distribution on brain MRI resembling that typical of maple syrup urine disease, contractures, dysmorphism, elevated alkaline phosphatase, mixed hearing loss (a combination of conductive and sensorineural), liver dysfunction, mitochondrial complex I and V deficiency, and therapy-responsive dyslipidemia with confirmed lipoprotein lipase deficiency. X-inactivation studies showed skewing in the clinically unaffected carrier mother, and CD109 surface expression in patient fibroblasts was 57% of that measured in controls; together these data support pathogenicity of this mutation. Furthermore, we review all reported germline PIGA mutations (1 nonsense, 1 frameshift, 1 in-frame deletion, five missense) in 8 unrelated families.ConclusionsOur case further delineates the heterogeneous phenotype of this condition for which we propose the term ‘PIGA deficiency’. While the phenotypic spectrum is wide, it could be classified into two types (severe and less severe) with shared hallmarks of infantile spasms with hypsarrhythmia on EEG and profound XLIDD. In severe PIGA deficiency, as described in our patient, patients also present with dysmorphic facial features, multiple CNS abnormalities, such as thin corpus callosum and delayed myelination, as well as hypotonia and elevated alkaline phosphatase along with liver, renal, and cardiac involvement; its course is often fatal. The less severe form of PIGA deficiency does not involve facial dysmorphism and multiple CNS abnormalities; instead, patients present with milder IDD, treatable seizures and generally a longer lifespan.


BMC Medical Genomics | 2014

FLAGS, frequently mutated genes in public exomes

Casper Shyr; Maja Tarailo-Graovac; Michael Gottlieb; Jessica Lee; Clara van Karnebeek; Wyeth W. Wasserman

BackgroundDramatic improvements in DNA-sequencing technologies and computational analyses have led to wide use of whole exome sequencing (WES) to identify the genetic basis of Mendelian disorders. More than 180 novel rare-disease-causing genes with Mendelian inheritance patterns have been discovered through sequencing the exomes of just a few unrelated individuals or family members. As rare/novel genetic variants continue to be uncovered, there is a major challenge in distinguishing true pathogenic variants from rare benign mutations.MethodsWe used publicly available exome cohorts, together with the dbSNP database, to derive a list of genes (n = 100) that most frequently exhibit rare (<1%) non-synonymous/splice-site variants in general populations. We termed these genes FLAGS for FrequentLy mutAted GeneS and analyzed their properties.ResultsAnalysis of FLAGS revealed that these genes have significantly longer protein coding sequences, a greater number of paralogs and display less evolutionarily selective pressure than expected. FLAGS are more frequently reported in PubMed clinical literature and more frequently associated with diseased phenotypes compared to the set of human protein-coding genes. We demonstrated an overlap between FLAGS and the rare-disease causing genes recently discovered through WES studies (n = 10) and the need for replication studies and rigorous statistical and biological analyses when associating FLAGS to rare disease. Finally, we showed how FLAGS are applied in disease-causing variant prioritization approach on exome data from a family affected by an unknown rare genetic disorder.ConclusionsWe showed that some genes are frequently affected by rare, likely functional variants in general population, and are frequently observed in WES studies analyzing diverse rare phenotypes. We found that the rate at which genes accumulate rare mutations is beneficial information for prioritizing candidates. We provided a ranking system based on the mutation accumulation rates for prioritizing exome-captured human genes, and propose that clinical reports associating any disease/phenotype to FLAGS be evaluated with extra caution.


DNA Repair | 2008

Spectrum of mutational events in the absence of DOG-1/FANCJ in Caenorhabditis elegans.

Yang Zhao; Maja Tarailo-Graovac; Nigel J. O’Neil; Ann M. Rose

The Caenorhabditis elegans ortholog of the Fanconi anemia pathway component J (FANCJ) is DOG-1, which is essential for genome stability. Previous studies have shown that disruption of the dog-1 gene generates small deletions of poly-C/poly-G tracts detectable by PCR and results in a mutator phenotype. In this paper, we describe the isolation and characterization of lethal mutations resulting from the loss of dog-1 function. The mutant strains were analyzed using a combination of techniques including genetic mapping, SNP mapping, and oaCGH (oligo array Comparative Genome Hybridization). Using the eT1 balancer system to recover lethal mutants, we isolated, in addition to small deletions, large chromosomal rearrangements, including duplications, translocations and deficiencies. The forward mutation frequency was 10-fold higher than the spontaneous frequency for eT1, and equivalent to that observed for low doses of standard mutagens. From a screen for suppressors of mdf-1/MAD1 lethality, we previously had isolated such-4(h2168), shown here to be a large tandem duplication. Thus, the range of mutational events caused by lack of DOG-1/FANCJ is much broader than previously described.


Current protocols in human genetics | 2004

UNIT 4.10 Using RepeatMasker to Identify Repetitive Elements in Genomic Sequences

Maja Tarailo-Graovac; Nansheng Chen

The RepeatMasker program is used for identifying repetitive elements in nucleotide sequences for further detailed analyses. Users can run RepeatMasker remotely via a Web site, or, for larger input sequences, the program and its dependent programs may be downloaded and run locally on Unix/Linux computers. The protocols in this chapter detail how to use RepeatMasker both remotely and locally to extract repetitive elements data and mask these repetitive elements in nucleotide sequences.


Genetics in Medicine | 2017

Assessment of the ExAC data set for the presence of individuals with pathogenic genotypes implicated in severe Mendelian pediatric disorders

Maja Tarailo-Graovac; Jing Yun Alice Zhu; Allison Matthews; Clara van Karnebeek; Wyeth W. Wasserman

PurposeWe analyzed the Exome Aggregation Consortium (ExAC) data set for the presence of individuals with pathogenic genotypes implicated in Mendelian pediatric disorders.MethodsClinVar likely/pathogenic variants supported by at least one peer-reviewed publication were assessed within the ExAC database to identify individuals expected to exhibit a childhood disorder based on concordance with disease inheritance modes: heterozygous (for dominant), homozygous (for recessive) or hemizygous (for X-linked recessive conditions). Variants from 924 genes reported to cause Mendelian childhood disorders were considered.ResultsWe identified ExAC individuals with candidate pathogenic genotypes for 190 previously published likely/pathogenic variants in 128 genes. After curation, we determined that 113 of the variants have sufficient support for pathogenicity and identified 1,717 ExAC individuals (~2.8% of the ExAC population) with corresponding possible/disease-associated genotypes implicated in rare Mendelian disorders, ranging from mild (e.g., due to SCN2A deficiency) to severe pediatric conditions (e.g., due to FGFR1 deficiency).ConclusionLarge-scale sequencing projects and data aggregation consortia provide unprecedented opportunities to determine the prevalence of pathogenic genotypes in unselected populations. This knowledge is crucial for understanding the penetrance of disease-associated variants, phenotypic variability, somatic mosaicism, as well as published literature curation for variant classification procedures and predicted clinical outcomes.


Annals of clinical and translational neurology | 2015

Altered PLP1 splicing causes hypomyelination of early myelinating structures.

Sietske H. Kevelam; Jennifer R. Taube; Rosalina M. L. van Spaendonk; Enrico Bertini; Karen Sperle; Mark A. Tarnopolsky; Davide Tonduti; Enza Maria Valente; Lorena Travaglini; Erik A. Sistermans; Geneviève Bernard; Coriene E. Catsman-Berrevoets; Clara van Karnebeek; John R. Østergaard; Richard L. Friederich; Mahmoud F. Elsaid; Jolanda H. Schieving; Maja Tarailo-Graovac; Simona Orcesi; Marjan E. Steenweg; Carola G.M. van Berkel; Quinten Waisfisz; Truus E. M. Abbink; Marjo S. van der Knaap; Grace M. Hobson; Nicole I. Wolf

The objective of this study was to investigate the genetic etiology of the X‐linked disorder “Hypomyelination of Early Myelinating Structures” (HEMS).


BMC Genomics | 2009

Polymorphic segmental duplication in the nematode Caenorhabditis elegans

Ismael A. Vergara; Allan K. Mah; Jim C Huang; Maja Tarailo-Graovac; Robert C. Johnsen; David L. Baillie; Nansheng Chen

BackgroundThe nematode Caenorhabditis elegans was the first multicellular organism to have its genome fully sequenced. Over the last 10 years since the original publication in 1998, the C. elegans genome has been scrutinized and the last gaps were filled in November 2002, which present a unique opportunity for examining genome-wide segmental duplications.ResultsHere, we performed analysis of the C. elegans genome in search for segmental duplications using a new tool–OrthoCluster–we have recently developed. We detected 3,484 duplicated segments–duplicons–ranging in size from 234 bp to 108 Kb. The largest pair of duplicons, 108 kb in length located on the left arm of Chromosome V, was further characterized. They are nearly identical at the DNA level (99.7% identity) and each duplicon contains 26 putative protein coding genes. Genotyping of 76 wild-type strains obtained from different labs in the C. elegans community revealed that not all strains contain this duplication. In fact, only 29 strains carry this large segmental duplication, suggesting a very recent duplication event in the C. elegans genome.ConclusionThis report represents the first demonstration that the C. elegans laboratory wild-type N2 strains has acquired large-scale differences.

Collaboration


Dive into the Maja Tarailo-Graovac's collaboration.

Top Co-Authors

Avatar

Clara van Karnebeek

University of British Columbia

View shared research outputs
Top Co-Authors

Avatar

Wyeth W. Wasserman

University of British Columbia

View shared research outputs
Top Co-Authors

Avatar

Colin Ross

University of British Columbia

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Britt I. Drögemöller

University of British Columbia

View shared research outputs
Top Co-Authors

Avatar

Casper Shyr

University of British Columbia

View shared research outputs
Top Co-Authors

Avatar

Margot I. Van Allen

University of British Columbia

View shared research outputs
Top Co-Authors

Avatar

Ann M. Rose

University of British Columbia

View shared research outputs
Top Co-Authors

Avatar

Bryan Sayson

University of British Columbia

View shared research outputs
Top Co-Authors

Avatar

C. van Karnebeek

University of British Columbia

View shared research outputs
Researchain Logo
Decentralizing Knowledge