Britta Vogel
Heidelberg University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Britta Vogel.
European Heart Journal | 2015
Jan Haas; Karen Frese; Barbara Peil; Wanda Kloos; Andreas Keller; Rouven Nietsch; Zhu Feng; Sabine Müller; Elham Kayvanpour; Britta Vogel; Farbod Sedaghat-Hamedani; Wei Keat Lim; Xiaohong Zhao; Dmitriy Fradkin; Doreen Köhler; Simon Fischer; Jennifer Franke; Sabine Marquart; Ioana Barb; Daniel Tian Li; Ali Amr; Philipp Ehlermann; Derliz Mereles; Tanja Weis; Sarah Hassel; Andreas Kremer; Vanessa King; Emil Wirsz; Richard Isnard; Michel Komajda
AIM Numerous genes are known to cause dilated cardiomyopathy (DCM). However, until now technological limitations have hindered elucidation of the contribution of all clinically relevant disease genes to DCM phenotypes in larger cohorts. We now utilized next-generation sequencing to overcome these limitations and screened all DCM disease genes in a large cohort. METHODS AND RESULTS In this multi-centre, multi-national study, we have enrolled 639 patients with sporadic or familial DCM. To all samples, we applied a standardized protocol for ultra-high coverage next-generation sequencing of 84 genes, leading to 99.1% coverage of the target region with at least 50-fold and a mean read depth of 2415. In this well characterized cohort, we find the highest number of known cardiomyopathy mutations in plakophilin-2, myosin-binding protein C-3, and desmoplakin. When we include yet unknown but predicted disease variants, we find titin, plakophilin-2, myosin-binding protein-C 3, desmoplakin, ryanodine receptor 2, desmocollin-2, desmoglein-2, and SCN5A variants among the most commonly mutated genes. The overlap between DCM, hypertrophic cardiomyopathy (HCM), and channelopathy causing mutations is considerably high. Of note, we find that >38% of patients have compound or combined mutations and 12.8% have three or even more mutations. When comparing patients recruited in the eight participating European countries we find remarkably little differences in mutation frequencies and affected genes. CONCLUSION This is to our knowledge, the first study that comprehensively investigated the genetics of DCM in a large-scale cohort and across a broad gene panel of the known DCM genes. Our results underline the high analytical quality and feasibility of Next-Generation Sequencing in clinical genetic diagnostics and provide a sound database of the genetic causes of DCM.
Basic Research in Cardiology | 2011
Benjamin Meder; Andreas Keller; Britta Vogel; Jan Haas; Farbod Sedaghat-Hamedani; Elham Kayvanpour; Steffen Just; Anne Borries; Jessica Rudloff; Petra Leidinger; Eckart Meese; Hugo A. Katus; Wolfgang Rottbauer
MicroRNAs (miRNAs) are important regulators of adaptive and maladaptive responses in cardiovascular diseases and hence are considered to be potential therapeutical targets. However, their role as novel biomarkers for the diagnosis of cardiovascular diseases still needs to be systematically evaluated. We assessed here for the first time whole-genome miRNA expression in peripheral total blood samples of patients with acute myocardial infarction (AMI). We identified 121 miRNAs, which are significantly dysregulated in AMI patients in comparison to healthy controls. Among these, miR-1291 and miR-663b show the highest sensitivity and specificity for the discrimination of cases from controls. Using a novel self-learning pattern recognition algorithm, we identified a unique signature of 20 miRNAs that predicts AMI with even higher power (specificity 96%, sensitivity 90%, and accuracy 93%). In addition, we show that miR-30c and miR-145 levels correlate with infarct sizes estimated by Troponin T release. The here presented study shows that single miRNAs and especially miRNA signatures derived from peripheral blood, could be valuable novel biomarkers for cardiovascular diseases.
Embo Molecular Medicine | 2013
Jan Haas; Karen Frese; Yoon Jung Park; Andreas Keller; Britta Vogel; Anders M. Lindroth; Dieter Weichenhan; Jennifer Franke; Simon Fischer; Andrea Bauer; Sabine Marquart; Farbod Sedaghat-Hamedani; Elham Kayvanpour; Doreen Köhler; Nadine M. Wolf; Sarah Hassel; Rouven Nietsch; Thomas Wieland; Philipp Ehlermann; Jobst Hendrik Schultz; Andreas Dösch; Derliz Mereles; Stefan E. Hardt; Johannes Backs; Jörg D. Hoheisel; Christoph Plass; Hugo A. Katus; Benjamin Meder
Dilated cardiomyopathies (DCM) show remarkable variability in their age of onset, phenotypic presentation, and clinical course. Hence, disease mechanisms must exist that modify the occurrence and progression of DCM, either by genetic or epigenetic factors that may interact with environmental stimuli. In the present study, we examined genome‐wide cardiac DNA methylation in patients with idiopathic DCM and controls. We detected methylation differences in pathways related to heart disease, but also in genes with yet unknown function in DCM or heart failure, namely Lymphocyte antigen 75 (LY75), Tyrosine kinase‐type cell surface receptor HER3 (ERBB3), Homeobox B13 (HOXB13) and Adenosine receptor A2A (ADORA2A). Mass‐spectrometric analysis and bisulphite‐sequencing enabled confirmation of the observed DNA methylation changes in independent cohorts. Aberrant DNA methylation in DCM patients was associated with significant changes in LY75 and ADORA2A mRNA expression, but not in ERBB3 and HOXB13. In vivo studies of orthologous ly75 and adora2a in zebrafish demonstrate a functional role of these genes in adaptive or maladaptive pathways in heart failure.
Circulation | 2008
David Hassel; Eberhard P. Scholz; Nicole Trano; Oliver Friedrich; Steffen Just; Benjamin Meder; Daniel Weiss; Edgar Zitron; Sabine Marquart; Britta Vogel; Christoph A. Karle; Gunnar Seemann; Mark C. Fishman; Hugo A. Katus; Wolfgang Rottbauer
Background— Genetic predisposition is believed to be responsible for most clinically significant arrhythmias; however, suitable genetic animal models to study disease mechanisms and evaluate new treatment strategies are largely lacking. Methods and Results— In search of suitable arrhythmia models, we isolated the zebrafish mutation reggae (reg), which displays clinical features of the malignant human short-QT syndrome such as accelerated cardiac repolarization accompanied by cardiac fibrillation. By positional cloning, we identified the reg mutation that resides within the voltage sensor of the zebrafish ether-à-go-go-related gene (zERG) potassium channel. The mutation causes premature zERG channel activation and defective inactivation, which results in shortened action potential duration and accelerated cardiac repolarization. Genetic and pharmacological inhibition of zERG rescues recessive reg mutant embryos, which confirms the gain-of-function effect of the reg mutation on zERG channel function in vivo. Accordingly, QT intervals in ECGs from heterozygous and homozygous reg mutant adult zebrafish are considerably shorter than in wild-type zebrafish. Conclusions— With its molecular and pathophysiological concordance to the human arrhythmia syndrome, zebrafish reg represents the first animal model for human short-QT syndrome.
European Heart Journal | 2014
Benjamin Meder; Frank Rühle; Tanja Weis; Georg Homuth; Andreas Keller; Jennifer Franke; Barbara Peil; Justo Lorenzo Bermejo; Karen Frese; Andreas Huge; Anika Witten; Britta Vogel; Jan Haas; Uwe Völker; Florian Ernst; Alexander Teumer; Philipp Ehlermann; Christian Zugck; Frauke Friedrichs; Heyo K. Kroemer; Marcus Dörr; Wolfgang Hoffmann; Bernhard Maisch; Sabine Pankuweit; Volker Ruppert; Thomas Scheffold; Uwe Kühl; Hans Peter Schultheiss; Reinhold Kreutz; Georg Ertl
AIMS Dilated cardiomyopathy (DCM) is one of the leading causes for cardiac transplantations and accounts for up to one-third of all heart failure cases. Since extrinsic and monogenic causes explain only a fraction of all cases, common genetic variants are suspected to contribute to the pathogenesis of DCM, its age of onset, and clinical progression. By a large-scale case-control genome-wide association study we aimed here to identify novel genetic risk loci for DCM. METHODS AND RESULTS Applying a three-staged study design, we analysed more than 4100 DCM cases and 7600 controls. We identified and successfully replicated multiple single nucleotide polymorphism on chromosome 6p21. In the combined analysis, the most significant association signal was obtained for rs9262636 (P = 4.90 × 10(-9)) located in HCG22, which could again be replicated in an independent cohort. Taking advantage of expression quantitative trait loci (eQTL) as molecular phenotypes, we identified rs9262636 as an eQTL for several closely located genes encoding class I and class II major histocompatibility complex heavy chain receptors. CONCLUSION The present study reveals a novel genetic susceptibility locus that clearly underlines the role of genetically driven, inflammatory processes in the pathogenesis of idiopathic DCM.
European Heart Journal | 2013
Britta Vogel; Andreas Keller; Karen Frese; Petra Leidinger; Farbod Sedaghat-Hamedani; Elham Kayvanpour; Wanda Kloos; Christina Backe; Ann Thanaraj; Thomas Brefort; Markus Beier; Stefan E. Hardt; Eckart Meese; Hugo A. Katus; Benjamin Meder
AIMS Non-ischaemic heart failure is one of the todays most prevalent cardiovascular disorders. Since modern pharmacotherapy has proved to be very effective in delaying disease progression and preventing death, imaging modalities and molecular biomarkers play an important role in early identification and clinical management as well as risk assessment of patients. The present study evaluated for the first time whole peripheral blood miRNAs as novel biomarker candidates for non-ischaemic heart failure with reduced ejection fraction (HF-REF). METHODS AND RESULTS We assessed genome-wide miRNA expression profiles in 53 HF-REF patients and 39 controls. We could identify and validate several miRNAs that show altered expression levels in non-ischaemic HF-REF, discriminating cases from controls both as single markers or when combined in a multivariate signature. In addition, we demonstrate that the miRNAs of this signature significantly correlate with disease severity as indicated by left ventricular ejection fraction. CONCLUSION Our data further denote that miRNAs are potential biomarkers for systolic heart failure. Since their detection levels in whole blood are also related to the degree of left ventricular dysfunction, they may serve as objective molecular tools to assess disease severity and prognosis.
Circulation Research | 2009
Benjamin Meder; Christina Laufer; David Hassel; Steffen Just; Sabine Marquart; Britta Vogel; Alexander Hess; Mark C. Fishman; Hugo A. Katus; Wolfgang Rottbauer
Although it is well known that mutations in the cardiac essential myosin light chain-1 (cmlc-1) gene can cause hypertrophic cardiomyopathy, the precise in vivo structural and functional roles of cMLC-1 in the heart are only poorly understood. We have isolated the zebrafish mutant lazy susan (laz), which displays severely reduced contractility of both heart chambers. By positional cloning, we identified a nonsense mutation within the zebrafish cmlc-1 gene to be responsible for the laz phenotype, leading to expression of a carboxyl-terminally truncated cMLC-1. Whereas complete loss of cMLC-1 leads to cardiac acontractility attributable to impaired cardiac sarcomerogenesis, expression of a carboxyl-terminally truncated cMLC-1 in laz mutant hearts is sufficient for normal cardiac sarcomerogenesis but severely impairs cardiac contractility in a cell-autonomous fashion. Whereas overexpression of wild-type cMLC-1 restores contractility of laz mutant cardiomyocytes, overexpression of phosphorylation site serine 195–deficient cMLC-1 (cMLC-1S195A) does not reconstitute cardiac contractility in laz mutant cardiomyocytes. By contrast, introduction of a phosphomimetic amino acid on position 195 (cMLC-1S195D) rescues cardiomyocyte contractility, demonstrating for the first time an essential role of the carboxyl terminus and especially of serine 195 of cMLC-1 in the regulation of cardiac contractility.
Biochemical and Biophysical Research Communications | 2009
Britta Vogel; Benjamin Meder; Steffen Just; Christina Laufer; Ina M. Berger; Sabrina Weber; Hugo A. Katus; Wolfgang Rottbauer
Due to lack of families suitable for linkage analysis and positional cloning most of the genetic causes of human dilated cardiomyopathy (DCM) are still unknown. To facilitate rapid identification and validation of novel DCM disease genes appropriate animal models are needed. To assess here for the first time whether the zebrafish is a suitable model organism to validate DCM candidate genes using antisense knock-down strategies, we inactivated in zebrafish known human DCM disease genes and then evaluated the resulting cardiac phenotypes. Consistently, knock-down of the here selected human DCM genes leads to severe heart failure with impairment of systolic cardiac function in zebrafish. Furthermore, gene-specific differences which are also seen in human DCM can be reliably reproduced in the zebrafish model. Our results indicate that the zebrafish is a suitable model organism to rapidly evaluate novel DCM disease genes in-vivo.
Clinical Chemistry | 2013
Britta Vogel; Andreas Keller; Karen Frese; Wanda Kloos; Elham Kayvanpour; Farbod Sedaghat-Hamedani; Sarah Hassel; Sabine Marquart; Markus Beier; Evangelos Giannitis; Stefan E. Hardt; Hugo A. Katus; Benjamin Meder
BACKGROUND Alterations in microRNA (miRNA) expression patterns in whole blood may be useful biomarkers of diverse cardiovascular disorders. We previously reported that miRNAs are significantly dysregulated in acute myocardial infarction (AMI) and applied machine-learning techniques to define miRNA subsets with high diagnostic power for AMI diagnosis. However, the kinetics of the time-dependent sensitivity of these novel miRNA biomarkers remained unknown. METHODS To characterize temporal changes in the expressed human miRNAs (miRNome), we performed here the first whole-genome miRNA kinetic study in AMI patients. We measured miRNA expression levels at multiple time points (0, 2, 4, 12, 24 h after initial presentation) in patients with acute ST-elevation myocardial infarction by using microfluidic primer extension arrays and quantitative real-time PCR. As a prerequisite, all patients enrolled had to have cardiac troponin T concentrations <50 ng/L on admission as measured with a high-sensitivity assay. RESULTS We found a subset of miRNAs to be significantly dysregulated both at initial presentation and during the course of AMI. Additionally, we identified novel miRNAs that are dysregulated early during myocardial infarction, such as miR-1915 and miR-181c*. CONCLUSIONS The present proof-of-concept study provides novel insights into the dynamic changes of the human miRNome during AMI.
BMC Medicine | 2014
Andreas Keller; Petra Leidinger; Britta Vogel; Christina Backes; Abdou ElSharawy; Valentina Galata; Sabine C. Mueller; Sabine Marquart; Michael G. Schrauder; Reiner Strick; Andrea Bauer; J�rg Wischhusen; Markus Beier; Jochen Kohlhaas; Hugo A. Katus; J�rg Hoheisel; Andre Franke; Benjamin Meder; Eckart Meese
BackgroundmiRNA profiles are promising biomarker candidates for a manifold of human pathologies, opening new avenues for diagnosis and prognosis. Beyond studies that describe miRNAs frequently as markers for specific traits, we asked whether a general pattern for miRNAs across many diseases exists.MethodsWe evaluated genome-wide circulating profiles of 1,049 patients suffering from 19 different cancer and non-cancer diseases as well as unaffected controls. The results were validated on 319 individuals using qRT-PCR.ResultsWe discovered 34 miRNAs with strong disease association. Among those, we found substantially decreased levels of hsa-miR-144* and hsa-miR-20b with AUC of 0.751 (95% CI: 0.703–0.799), respectively. We also discovered a set of miRNAs, including hsa-miR-155*, as rather stable markers, offering reasonable control miRNAs for future studies. The strong downregulation of hsa-miR-144* and the less variable pattern of hsa-miR-155* has been validated in a cohort of 319 samples in three different centers. Here, breast cancer as an additional disease phenotype not included in the screening phase has been included as the 20th trait.ConclusionsOur study on 1,368 patients including 1,049 genome-wide miRNA profiles and 319 qRT-PCR validations further underscores the high potential of specific blood-borne miRNA patterns as molecular biomarkers. Importantly, we highlight 34 miRNAs that are generally dysregulated in human pathologies. Although these markers are not specific to certain diseases they may add to the diagnosis in combination with other markers, building a specific signature. Besides these dysregulated miRNAs, we propose a set of constant miRNAs that may be used as control markers.