Brittany M. Young
University of Wisconsin-Madison
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Brittany M. Young.
Developmental Biology | 2009
Gianni Carraro; Ahmed H.K. El-Hashash; Diego Guidolin; Caterina Tiozzo; Gianluca Turcatel; Brittany M. Young; Stijn De Langhe; Saverio Bellusci; Wei Shi; Pier Paolo Parnigotto; David Warburton
The miR-17 family of microRNAs has recently been recognized for its importance during lung development. The transgenic overexpression of the entire miR-17-92 cluster in the lung epithelium led to elevated cellular proliferation and inhibition of differentiation, while targeted deletion of miR-17-92 and miR-106b-25 clusters showed embryonic or early post-natal lethality. Herein we demonstrate that miR-17 and its paralogs, miR-20a, and miR-106b, are highly expressed during the pseudoglandular stage and identify their critical functional role during embryonic lung development. Simultaneous downregulation of these three miRNAs in explants of isolated lung epithelium altered FGF10 induced budding morphogenesis, an effect that was rescued by synthetic miR-17. E-Cadherin levels were reduced, and its distribution was altered by miR-17, miR-20a and miR-106b downregulation, while conversely, beta-catenin activity was augmented, and expression of its downstream targets, including Bmp4 as well as Fgfr2b, increased. Finally, we identified Stat3 and Mapk14 as key direct targets of miR-17, miR-20a, and miR-106b and showed that simultaneous overexpression of Stat3 and Mapk14 mimics the alteration of E-Cadherin distribution observed after miR-17, miR-20a, and miR-106b downregulation. We conclude that the mir-17 family of miRNA modulates FGF10-FGFR2b downstream signaling by specifically targeting Stat3 and Mapk14, hence regulating E-Cadherin expression, which in turn modulates epithelial bud morphogenesis in response to FGF10 signaling.
Frontiers in Neuroengineering | 2014
Brittany M. Young; Zack Nigogosyan; Léo M. Walton; Jie Song; Veena A. Nair; Scott W. Grogan; Mitchell E. Tyler; Dorothy F. Edwards; Kristin Caldera; Justin A. Sattin; Justin C. Williams; Vivek Prabhakaran
This study aims to examine the changes in task-related brain activity induced by rehabilitative therapy using brain-computer interface (BCI) technologies and whether these changes are relevant to functional gains achieved through the use of these therapies. Stroke patients with persistent upper-extremity motor deficits received interventional rehabilitation therapy using a closed-loop neurofeedback BCI device (n = 8) or no therapy (n = 6). Behavioral assessments using the Stroke Impact Scale, the Action Research Arm Test (ARAT), and the Nine-Hole Peg Test (9-HPT) as well as task-based fMRI scans were conducted before, during, after, and 1 month after therapy administration or at analogous intervals in the absence of therapy. Laterality Index (LI) values during finger tapping of each hand were calculated for each time point and assessed for correlation with behavioral outcomes. Brain activity during finger tapping of each hand shifted over the course of BCI therapy, but not in the absence of therapy, to greater involvement of the non-lesioned hemisphere (and lesser involvement of the stroke-lesioned hemisphere) as measured by LI. Moreover, changes from baseline LI values during finger tapping of the impaired hand were correlated with gains in both objective and subjective behavioral measures. These findings suggest that the administration of interventional BCI therapy can induce differential changes in brain activity patterns between the lesioned and non-lesioned hemispheres and that these brain changes are associated with changes in specific motor functions.
Frontiers in Neuroengineering | 2014
Brittany M. Young; Zack Nigogosyan; Alexander Remsik; Léo M. Walton; Jie Song; Veena A. Nair; Scott W. Grogan; Mitchell E. Tyler; Dorothy F. Edwards; Kristin Caldera; Justin A. Sattin; Justin C. Williams; Vivek Prabhakaran
Brain-computer interface (BCI) technology is being incorporated into new stroke rehabilitation devices, but little is known about brain changes associated with its use. We collected anatomical and functional MRI of nine stroke patients with persistent upper extremity motor impairment before, during, and after therapy using a BCI system. Subjects were asked to perform finger tapping of the impaired hand during fMRI. Action Research Arm Test (ARAT), 9-Hole Peg Test (9-HPT), and Stroke Impact Scale (SIS) domains of Hand Function (HF) and Activities of Daily Living (ADL) were also assessed. Group-level analyses examined changes in whole-brain task-based functional connectivity (FC) to seed regions in the motor network observed during and after BCI therapy. Whole-brain FC analyses seeded in each thalamus showed FC increases from baseline at mid-therapy and post-therapy (p < 0.05). Changes in FC between seeds at both the network and the connection levels were examined for correlations with changes in behavioral measures. Average motor network FC was increased post-therapy, and changes in average network FC correlated (p < 0.05) with changes in performance on ARAT (R2 = 0.21), 9-HPT (R2 = 0.41), SIS HF (R2 = 0.27), and SIS ADL (R2 = 0.40). Multiple individual connections within the motor network were found to correlate in change from baseline with changes in behavioral measures. Many of these connections involved the thalamus, with change in each of four behavioral measures significantly correlating with change from baseline FC of at least one thalamic connection. These preliminary results show changes in FC that occur with the administration of rehabilitative therapy using a BCI system. The correlations noted between changes in FC measures and changes in behavioral outcomes indicate that both adaptive and maladaptive changes in FC may develop with this therapy and also suggest a brain-behavior relationship that may be stimulated by the neuromodulatory component of BCI therapy.
Frontiers in Neuroengineering | 2014
Jie Song; Brittany M. Young; Zack Nigogosyan; Léo M. Walton; Veena A. Nair; Scott W. Grogan; Mitchell E. Tyler; Dorothy Farrar-Edwards; Kristin Caldera; Justin A. Sattin; Justin C. Williams; Vivek Prabhakaran
The relationship of the structural integrity of white matter tracts and cortical activity to motor functional outcomes in stroke patients is of particular interest in understanding mechanisms of brain structural and functional changes while recovering from stroke. This study aims to probe these underlying mechanisms using diffusion tensor imaging (DTI) and fMRI measures. We examined the structural integrity of the posterior limb of the internal capsule (PLIC) using DTI and corticomotor activity using motor-task fMRI in stroke patients who completed up to 15 sessions of rehabilitation therapy using Brain-Computer Interface (BCI) technology. We hypothesized that (1) the structural integrity of PLIC and corticomotor activity are affected by stroke; (2) changes in structural integrity and corticomotor activity following BCI intervention are related to motor recovery; (3) there is a potential relationship between structural integrity and corticomotor activity. We found that (1) the ipsilesional PLIC showed significantly decreased fractional anisotropy (FA) values when compared to the contralesional PLIC; (2) lower ipsilesional PLIC-FA values were significantly associated with worse motor outcomes (i.e., ipsilesional PLIC-FA and motor outcomes were positively correlated.); (3) lower ipsilesional PLIC-FA values were significantly associated with greater ipsilesional corticomotor activity during impaired-finger-tapping-task fMRI (i.e., ipsilesional PLIC-FA and ipsilesional corticomotor activity were negatively correlated), with an overall bilateral pattern of corticomotor activity observed; and (4) baseline FA values predicted motor recovery assessed after BCI intervention. These findings suggest that (1) greater vs. lesser microstructural integrity of the ipsilesional PLIC may contribute toward better vs. poor motor recovery respectively in the stroke-affected limb and demand lesser vs. greater cortical activity respectively from the ipsilesional motor cortex; and that (2) PLIC-FA is a promising biomarker in tracking and predicting motor functional recovery in stroke patients receiving BCI intervention.
Annals of clinical and translational neurology | 2015
Veena A. Nair; Brittany M. Young; Christian La; Peter Reiter; Tanvi Nadkarni; Jie Song; Svyatoslav Vergun; Naga Saranya Addepally; Krishna Mylavarapu; Jennifer L. Swartz; Matthew B. Jensen; Marcus Chacon; Justin A. Sattin; Vivek Prabhakaran
Several neuroimaging studies have examined language reorganization in stroke patients with aphasia. However, few studies have examined language reorganization in stroke patients without aphasia. Here, we investigated functional connectivity (FC) changes after stroke in the language network using resting‐state fMRI and performance on a verbal fluency (VF) task in patients without clinically documented language deficits.
Frontiers in Human Neuroscience | 2015
Jie Song; Veena A. Nair; Brittany M. Young; Léo M. Walton; Zack Nigogosyan; Alexander Remsik; Mitchell E. Tyler; Dorothy Farrar-Edwards; Kristin Caldera; Justin A. Sattin; Justin C. Williams; Vivek Prabhakaran
Tracking and predicting motor outcomes is important in determining effective stroke rehabilitation strategies. Diffusion tensor imaging (DTI) allows for evaluation of the underlying structural integrity of brain white matter tracts and may serve as a potential biomarker for tracking and predicting motor recovery. In this study, we examined the longitudinal relationship between DTI measures of the posterior limb of the internal capsule (PLIC) and upper-limb motor outcomes in 13 stroke patients (median 20-month post-stroke) who completed up to 15 sessions of intervention using brain–computer interface (BCI) technology. Patients’ upper-limb motor outcomes and PLIC DTI measures including fractional anisotropy (FA), axial diffusivity (AD), radial diffusivity (RD), and mean diffusivity (MD) were assessed longitudinally at four time points: pre-, mid-, immediately post- and 1-month-post intervention. DTI measures and ratios of each DTI measure comparing the ipsilesional and contralesional PLIC were correlated with patients’ motor outcomes to examine the relationship between structural integrity of the PLIC and patients’ motor recovery. We found that lower diffusivity and higher FA values of the ipsilesional PLIC were significantly correlated with better upper-limb motor function. Baseline DTI ratios were significantly correlated with motor outcomes measured immediately post and 1-month-post BCI interventions. A few patients achieved improvements in motor recovery meeting the minimum clinically important difference (MCID). These findings suggest that upper-limb motor recovery in stroke patients receiving BCI interventions relates to the microstructural status of the PLIC. Lower diffusivity and higher FA measures of the ipsilesional PLIC contribute toward better motor recovery in the stroke-affected upper-limb. DTI-derived measures may be a clinically useful biomarker in tracking and predicting motor recovery in stroke patients receiving BCI interventions.
Frontiers in Neuroengineering | 2014
Brittany M. Young; Zack Nigogosyan; Veena A. Nair; Léo M. Walton; Jie Song; Mitchell E. Tyler; Dorothy F. Edwards; Kristin Caldera; Justin A. Sattin; Justin C. Williams; Vivek Prabhakaran
Therapies involving new technologies such as brain-computer interfaces (BCI) are being studied to determine their potential for interventional rehabilitation after acute events such as stroke produce lasting impairments. While studies have examined the use of BCI devices by individuals with disabilities, many such devices are intended to address a specific limitation and have been studied when this limitation or disability is present in isolation. Little is known about the therapeutic potential of these devices for individuals with multiple disabilities with an acquired impairment overlaid on a secondary long-standing disability. We describe a case in which a male patient with congenital deafness suffered a right pontine ischemic stroke, resulting in persistent weakness of his left hand and arm. This patient volunteer completed four baseline assessments beginning at 4 months after stroke onset and subsequently underwent 6 weeks of interventional rehabilitation therapy using a closed-loop neurofeedback BCI device with visual, functional electrical stimulation, and tongue stimulation feedback modalities. Additional assessments were conducted at the midpoint of therapy, upon completion of therapy, and 1 month after completing all BCI therapy. Anatomical and functional MRI scans were obtained at each assessment, along with behavioral measures including the Stroke Impact Scale (SIS) and the Action Research Arm Test (ARAT). Clinically significant improvements in behavioral measures were noted over the course of BCI therapy, with more than 10 point gains in both the ARAT scores and scores for the SIS hand function domain. Neuroimaging during finger tapping of the impaired hand also showed changes in brain activation patterns associated with BCI therapy. This case study demonstrates the potential for individuals who have preexisting disability or possible atypical brain organization to learn to use a BCI system that may confer some rehabilitative benefit.
Expert Review of Medical Devices | 2016
Alexander Remsik; Brittany M. Young; Vermilyea R; Kiekhoefer L; Abrams J; Evander Elmore S; Schultz P; Nair; Dorothy F. Edwards; Justin C. Williams; Prabhakaran
ABSTRACT Stroke is a leading cause of acquired disability resulting in distal upper extremity functional motor impairment. Stroke mortality rates continue to decline with advances in healthcare and medical technology. This has led to an increased demand for advanced, personalized rehabilitation. Survivors often experience some level of spontaneous recovery shortly after their stroke event, yet reach a functional plateau after which there is exiguous motor recovery. Nevertheless, studies have demonstrated the potential for recovery beyond this plateau. Non-traditional neurorehabilitation techniques, such as those incorporating the brain-computer interface (BCI), are being investigated for rehabilitation. BCIs may offer a gateway to the brain’s plasticity and revolutionize how humans interact with the world. Non-invasive BCIs work by closing the proprioceptive feedback loop with real-time, multi-sensory feedback allowing for volitional modulation of brain signals to assist hand function. BCI technology potentially promotes neuroplasticity and Hebbian-based motor recovery by rewarding cortical activity associated with sensory-motor rhythms through use with a variety of self-guided and assistive modalities.
NeuroImage: Clinical | 2015
Tanvi Nadkarni; Matthew J. Andreoli; Veena A. Nair; Peng Yin; Brittany M. Young; Bornali Kundu; Joshua Pankratz; Andrew C. Radtke; Ryan Holdsworth; John S. Kuo; Aaron S. Field; Mustafa K. Başkaya; Chad H. Moritz; M. Elizabeth Meyerand; Vivek Prabhakaran
Background and purpose Functional magnetic resonance imaging (fMRI) is a non-invasive pre-surgical tool used to assess localization and lateralization of language function in brain tumor and vascular lesion patients in order to guide neurosurgeons as they devise a surgical approach to treat these lesions. We investigated the effect of varying the statistical thresholds as well as the type of language tasks on functional activation patterns and language lateralization. We hypothesized that language lateralization indices (LIs) would be threshold- and task-dependent. Materials and methods Imaging data were collected from brain tumor patients (n = 67, average age 48 years) and vascular lesion patients (n = 25, average age 43 years) who received pre-operative fMRI scanning. Both patient groups performed expressive (antonym and/or letter-word generation) and receptive (tumor patients performed text-reading; vascular lesion patients performed text-listening) language tasks. A control group (n = 25, average age 45 years) performed the letter-word generation task. Results Brain tumor patients showed left-lateralization during the antonym-word generation and text-reading tasks at high threshold values and bilateral activation during the letter-word generation task, irrespective of the threshold values. Vascular lesion patients showed left-lateralization during the antonym and letter-word generation, and text-listening tasks at high threshold values. Conclusion Our results suggest that the type of task and the applied statistical threshold influence LI and that the threshold effects on LI may be task-specific. Thus identifying critical functional regions and computing LIs should be conducted on an individual subject basis, using a continuum of threshold values with different tasks to provide the most accurate information for surgical planning to minimize post-operative language deficits.
Frontiers in Human Neuroscience | 2015
Brittany M. Young; Zack Nigogosyan; Léo M. Walton; Alexander Remsik; Jie Song; Veena A. Nair; Mitchell E. Tyler; Dorothy F. Edwards; Kristin Caldera; Justin A. Sattin; Justin C. Williams; Vivek Prabhakaran
Brain–computer interfaces (BCIs) are an emerging novel technology for stroke rehabilitation. Little is known about how dose-response relationships for BCI therapies affect brain and behavior changes. We report preliminary results on stroke patients (n = 16, 11 M) with persistent upper extremity motor impairment who received therapy using a BCI system with functional electrical stimulation of the hand and tongue stimulation. We collected MRI scans and behavioral data using the Action Research Arm Test (ARAT), 9-Hole Peg Test (9-HPT), and Stroke Impact Scale (SIS) before, during, and after the therapy period. Using anatomical and functional MRI, we computed Laterality Index (LI) for brain activity in the motor network during impaired hand finger tapping. Changes from baseline LI and behavioral scores were assessed for relationships with dose, intensity, and frequency of BCI therapy. We found that gains in SIS Strength were directly responsive to BCI therapy: therapy dose and intensity correlated positively with increased SIS Strength (p ≤ 0.05), although no direct relationships were identified with ARAT or 9-HPT scores. We found behavioral measures that were not directly sensitive to differences in BCI therapy administration but were associated with concurrent brain changes correlated with BCI therapy administration parameters: therapy dose and intensity showed significant (p ≤ 0.05) or trending (0.05 < p < 0.1) negative correlations with LI changes, while therapy frequency did not affect LI. Reductions in LI were then correlated (p ≤ 0.05) with increased SIS Activities of Daily Living scores and improved 9-HPT performance. Therefore, some behavioral changes may be reflected by brain changes sensitive to differences in BCI therapy administration, while others such as SIS Strength may be directly responsive to BCI therapy administration. Data preliminarily suggest that when using BCI in stroke rehabilitation, therapy frequency may be less important than dose and intensity.