Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Brittany Tillman is active.

Publication


Featured researches published by Brittany Tillman.


Experimental and Molecular Pathology | 2011

PROTECTIVE EFFECT OF QUERCETIN, EGCG, CATECHIN AND BETAINE AGAINST OXIDATIVE STRESS INDUCED BY ETHANOL IN VITRO

Joan Oliva; Fawzia Bardag-Gorce; Brittany Tillman; Samuel W. French

There is a need for a nontoxic antioxidant agent to be identified which will prevent alcoholic liver disease (ALD) in alcoholic patients. We tested 4 candidate agents: quercetin, EGCG, catechin and betaine, all of which occur naturally in food. HepG2 cells overexpressing CYP2E1 were subjected to arachidonic acid, iron and 100mM ethanol with or without the antioxidant agent. All the agents prevented oxidative stress and MDA/4HNE formation induced by ethanol, except for EGCG. Catechin prevented CYP2E1 induction by ethanol. All the agents tended to down-regulate the ethanol-induced increased expression of glutathionine peroxidase 4 (GPX4). All the agents, except catechin, tended to reduce the expression of SOD2 induced by ethanol. Heat shock protein 70 was up-regulated by ethanol alone and betaine tended to prevent this. All 4 agents down-regulated the expression of Gadd45b in the presence of ethanol, which could explain the mechanism of DNA demethylation associated with the up-regulation of the gene expression observed in experimental ALD. In conclusion, the in vitro model of oxidative stress induced by ethanol provided evidence that all 4 agents tested prevented some aspect of liver cell injury caused by ethanol.


Experimental and Molecular Pathology | 2014

The inflammasome in alcoholic hepatitis: Its relationship with Mallory–Denk body formation

Yue Peng; Barbara A. French; Brittany Tillman; Timothy R. Morgan; Samuel W. French

Recent studies indicate that the inflammasome activation plays important roles in the pathogenesis of alcoholic hepatitis (AH). Nod-like receptor protein 3 (NLRP3) is a key component of the macromolecular complex that is so called the inflammasome that triggers caspase 1-dependent maturation of the precursors of IL-1β and IL-18 cytokines. It is also known that the adaptor proteins including apoptosis-associated speck-like protein containing CARD (ASC) and the mitochondrial antiviral signaling protein (MAVS) are necessary for NLRP3-dependent inflammasome function. Steatohepatitis frequently includes Mallory-Denk body (MDB) formation. In the case of alcoholic steatohepatitis, MDB formation occurs in 80% of biopsies (French 1981; French 1981). While previous studies have focused on in vitro cell lines and mouse models, we are the first group to investigate inflammasome activation in AH liver biopsy specimen and correlate it with MDB formation. Expression of NOD1, NLRP3, ASC, NAIP, MAVS, caspase 1, IL-1β, IL-18, and other inflammatory components including IL-6, IL-10, TNF-α, IFN-γ, STAT3, and p65 was measured in three to eight formalin-fixed paraffin-embedded AH specimens and control normal liver specimens by immunofluorescence staining and quantified by immunofluorescence intensity. The specimens were double stained with ubiquitin to demonstrate the relationship between inflammasome activation and MDB formation. MAVS, caspase1, IL-18, and TNF-α showed increases in expression in AH compared to the controls (p<0.05), and NAIP expression markedly increased in AH compared to the controls (p<0.01). There was a trend that levels of NLRP3, ASC, caspase1, IL-18, IL-10, and p65 expression correlated with the number of MDBs found in the same field of measurement (correlation coefficients were between 0.62 and 0.93, p<0.05). Our results demonstrate the activation of the inflammasome in AH and suggest that MDB could be an indicator of the extent of inflammasome activation.


Experimental and Molecular Pathology | 2014

Increased activity of the complement system in the liver of patients with alcoholic hepatitis.

Hong Shen; Barbara A. French; Hui Liu; Brittany Tillman; Samuel W. French

Inflammation has been suggested as a mechanism underlying the development of alcoholic hepatitis (AH). The activation of the complement system plays an important role in inflammation. Although it has been shown that ethanol-induced activation of the complement system contributes to the pathophysiology of ethanol-induced liver injury in mice, whether ethanol consumption activates the complement system in the human liver has not been investigated. Using antibodies against C1q, C3, and C5, the immunoreactivity of the complement system in patients with AH was examined by immunohistochemistry and quantified by morphometric image analysis. The immunoreactivity intensity of C1q, C3, and C5 in patients with AH was significantly higher than that seen in normal controls. Further, the gene expression of C1q, C3, and C5 was examined using real-time PCR. There were increases in the levels of C1q and C5, but not C3 mRNA in AH. Moreover, the immunoreactivity of C5a receptor (C5aR) also increased in AH. To explore the functional implication of the activation of the complement system in AH, we examined the colocalization of C5aR in Mallory-Denk bodies (MDBs) forming balloon hepatocytes. C5aR was focally overexpressed in the MDB forming cells. Collectively, our study suggests that alcohol consumption increases the activity of the complement system in the liver cells, which contributes to the inflammation-associated pathogenesis of AH.


Experimental and Molecular Pathology | 2014

Mallory-Denk Body (MDB) formation modulates Ufmylation expression epigenetically in alcoholic hepatitis (AH) and non-alcoholic steatohepatitis (NASH).

Hui Liu; Ming Gong; Barbara A. French; Jun Li; Brittany Tillman; Samuel W. French

Promoter CpG island hypermethylation is an important mechanism for inactivating key cellular enzymes that mediate epigenetic processes in hepatitis-related hepatocellular carcinoma (HCC). The ubiquitin-fold modifier 1 (Ufm1) conjugation pathway (Ufmylation) plays an essential role in protein degradation, protein quality control and signal transduction. Previous studies showed that the Ufmylation pathway was downregulated in alcoholic hepatitis (AH), non-alcoholic steatohepatitis (NASH) and in mice fed DDC, resulting in the formation of Mallory-Denk Bodies (MDBs). In this study, we further discovered that betaine, a methyl donor, fed together with DDC significantly prevents the increased expression of Ufmylation in drug-primed mice fed DDC. Betaine significantly prevented transcript silencing of Ufm1, Uba5 and UfSP1 where MDBs developed and also prevented the increased expression of FAT10 and LMP7 caused by DDC re-fed mice. Similar downregulation of Ufmylation was observed in multiple AH and NASH biopsies which had formed MDBs. The DNA methylation levels of Ufm1, Ufc1 and UfSP1 in the promoter CpG region were significantly increased both in AH and NASH patients compared to normal subjects. DNA (cytosine-5-)-methyltransferase 1 (DNMT1) and DNA (cytosine-5-)-methyltransferase 3 beta (DNMT3B) mRNA levels were markedly upregulated in AH and NASH patients, implying that the maintenance of Ufmylation methylation might be mediated by DNMT1 and DNMT3B together. These data show that MDB formation results from Ufmylation expression epigenetically in AH and NASH patients. Promoter CpG methylation may be a major mechanism silencing Ufmylation expression.


Experimental and Molecular Pathology | 2012

FAT10 knock out mice livers fail to develop Mallory-Denk bodies in the DDC mouse model.

Samuel W. French; Barbara A. French; Joan Oliva; Jun Li; Fawzia Bardag-Gorce; Brittany Tillman; A. Canaan

Mallory-Denk bodies (MDBs) are aggresomes composed of undigested ubiqutinated short lived proteins which have accumulated because of a decrease in the rate of their degradation by the 26s proteasome. The decrease in the activity of the proteasome is due to a shift in the activity of the 26s proteasome to the immunoproteasome triggered by an increase in expression of the catalytic subunits of the immunoproteasome which replaces the catalytic subunits of the 26s proteasome. This switch in the type of proteasome in liver cells is triggered by the binding of IFNγ to the IFNγ sequence response element (ISRE) located on the FAT10 promoter. To determine if either FAT10 or IFNγ are essential for the formation of MDBs we fed both IFNγ and FAT10 knock out (KO) mice DDC added to the control diet for 10weeks in order to induce MDBs. Mice fed the control diet and Wild type mice fed the DDC or control diet were compared. MDBs were located by immunofluorescent double stains using antibodies to ubiquitin to stain MDBs and FAT10 to localize the increased expression of FAT10 in MDB forming hepatocytes. We found that MDB formation occurred in the IFNγ KO mice but not in the FAT10 KO mice. Western blots showed an increase in the ubiquitin smears and decreases β 5 (chymotrypsin-like 26S proteasome subunit) in the Wild type mice fed DDC but not in the FAT10 KO mice fed DDC. To conclude, we have demonstrated that FAT10 is essential to the induction of MDB formation in the DDC fed mice.


Oncotarget | 2015

Aberrant modulation of the BRCA1 and G1/S cell cycle pathways in alcoholic hepatitis patients with Mallory Denk Bodies revealed by RNA sequencing

Hui Liu; Ming Gong; Barbara A. French; Guanghong Liao; Jun Li; Brittany Tillman; Samuel W. French

Mallory-Denk Bodies (MDBs) are prevalent in various liver diseases including alcoholic hepatitis (AH) and are formed in mice livers by feeding DDC. Liver injury from alcohol administration causes balloon hepatocytes and MDB formation impeding liver regeneration. By comparing AH livers where MDBs had formed with normal liver transcriptomes obtained by RNA sequencing (RNA-Seq), there was significant upregulation of BRCA1-mediated signaling and G1/S cell cycle checkpoint pathways. The transcriptional architecture of differentially expressed genes from AH livers reflected step-wise transcriptional changes progressing to AH. Key molecules such as BRCA1, p15 and p21 were significantly upregulated both in AH livers and in the livers of the DDC re-fed mice model where MDBs had formed. The increase of G1/S cell cycle checkpoint inhibitors p15 and p21 results in cell cycle arrest and inhibition of liver regeneration, implying that p15 and p21 could be exploited for the identification of specific targets for the treatment of liver disease. Provided here for the first time is the RNA-Seq data that represents the fully annotated catalogue of the expression of mRNAs. The most prominent alterations observed were the changes in BRCA1-mediated signaling and G1/S cell cycle checkpoint pathways. These new findings expand previous and related knowledge in the search for gene changes that might be critical in the understanding of the underlying progression to the development of AH.


Experimental and Molecular Pathology | 2015

Altered regulation of miR-34a and miR-483-3p in alcoholic hepatitis and DDC fed mice.

Hui Liu; Barbara A. French; Jun Li; Brittany Tillman; Samuel W. French

MicroRNAs are small noncoding RNAs that negatively regulate gene expression by binding to the untranslated regions of their target mRNAs. Deregulation of miRNAs is shown to play pivotal roles in tumorigenesis and progression. Mallory-Denk Bodies (MDBs) are prevalent in various liver diseases including alcoholic hepatitis (AH) and are formed in mice livers by feeding DDC. By comparing AH livers where MDBs had formed with normal livers, there were significant changes of miR-34a and miR-483-3p by RNA sequencing (RNA-Seq) analyses. Real-time PCR further shows a 3- and 6-fold upregulation (respectively) of miR-34a in the AH livers and in the livers of DDC re-fed mice, while miR-483-3p was significantly downregulated in AH and DDC re-fed mice livers. This indicates that miR-34a and miR-483-3p may be crucial for liver MDB formation. P53 mRNA was found to be significantly downregulated both in the AH livers and in the livers of DDC re-fed mice, indicating that the upregulation of miR-34a is permitted by the decrease of p53 in AH since miR-34a is a main target of p53. Overexpression of miR-34a leads to an increase of p53 targets such as p27, which inhibits the cell cycle leading to cell cycle arrest. Importantly, BRCA1 is a target gene of miR-483-3p by RNA-Seq analyses and the downregulation of miR-483-3p may be the mechanism for liver MDB formation since the BRCA1 signal was markedly upregulated in AH livers. These results constitute a demonstration of the altered regulation of miR-34a and miR-483-3p in the livers of AH and mice fed DDC where MDBs formed, providing further insight into the mechanism of MDB formation mediated by miR-34a and miR-483-3p in AH.


Experimental and Molecular Pathology | 2016

Upregulation of autophagy components in alcoholic hepatitis and nonalcoholic steatohepatitis.

Maryam Masouminia; S. Samadzadeh; Alejandro Mendoza; Barbara A. French; Brittany Tillman; Samuel W. French

There are many homeostatic mechanisms for coping with stress conditions in cells, including autophagy. In many studies autophagy, as an intracellular pathway which degrades misfolded and damaged protein, and Mallory-Denk Body (MDB) formation have been shown to be protective mechanisms against stress such as alcoholic hepatitis. Alcohol has a significant role in alteration of lipid homeostasis, sterol regulatory element-binding proteins (SREBPs) and peroxidase proliferator-activated receptors through AMP-activated protein kinase (AMPK)-dependent mechanism. AMPK is one of the kinases that regulate autophagy through the dephosphorylation of ATG1. Activation of ATG1 (ULK kinases family) activates ATG6. These two activated proteins relocate to the site of initial autophagosome and activate the other downstream components of autophagocytosis. Many other proteins regulate autophagocytosis at the gene level. CHOP (C/EBP homologous protein) is one of the most important parts of stress-inducible transcription that encodes a ubiquitous transcription factor. In this report we measure the upregulation of the gene that are involved in autophagocytosis in liver biopsies of alcoholic hepatitis and NASH. Electron microscopy was used to document the presence of autophagosomes in the liver cells. Expression of AMPK1, ATG1, ATG6 and CHOP in ASH were significantly (p value<0.05) upregulated in comparison to control. Electron microscopy findings of ASH confirmed the presence of autophagosomes, one of which contained a MDB, heretofore undescribed. Significant upregulations of AMPK-1, ATG-1, ATG-6, and CHOP, and uptrending of ATG-4, ATG-5, ATG-9, ATR, and ATM in ASH compared to normal control livers indicate active autophagocytosis in alcoholic hepatitis.


Experimental and Molecular Pathology | 2015

IL-8 signaling is up-regulated in alcoholic hepatitis and DDC fed mice with Mallory Denk Bodies (MDBs) present.

Hui Liu; Barbara A. French; Tyler J. Nelson; Jun Li; Brittany Tillman; Samuel W. French

Chemokines and their receptors are involved in oncogenesis and in tumor progression, invasion, and metastasis. Various chemokines also promote cell proliferation and resistance to apoptosis of stressed cells. The chemokine CXCL8, also known as interleukin-8 (IL-8), is a proinflammatory molecule that has functions within the tumor microenvironment. Deregulation of IL-8 signaling is shown to play pivotal roles in tumorigenesis and progression. Mallory-Denk Bodies (MDBs) are prevalent in various liver diseases including alcoholic hepatitis (AH) and are formed in mice livers by feeding DDC. By comparing AH livers where MDBs had formed with normal livers, there were significant changes of IL-8 signaling by RNA sequencing (RNA-Seq) analyses. Real-time PCR analysis of CXCR2 further shows a 6-fold up-regulation in AH livers and a 26-fold up-regulation in the livers of DDC re-fed mice. IL-8 mRNA was also significantly up-regulated in AH livers and DDC re-fed mice livers. This indicates that CXCR2 and IL-8 may be crucial for liver MDB formation. MDB containing balloon hepatocytes in AH livers had increased intensity of staining of the cytoplasm for both CXCR2 and IL-8. Overexpression of IL-8 leads to an increase of the mitogen activated protein kinase (MAPK) cascade and exacerbates the inflammatory cycle. These observations constitute a demonstration of the altered regulation of IL-8 signaling in the livers of AH and mice fed DDC where MDBs formed, providing further insight into the mechanism of MDB formation mediated by IL-8 signaling in AH.


Experimental and Molecular Pathology | 2015

Levels of metacaspase1 and chaperones related to protein quality control in alcoholic and nonalcoholic steatohepatitis.

Alejandro Mendoza; Jacques Dorce; Yue Peng; Barbara A. French; Brittany Tillman; Jun Li; Samuel W. French

Efficient management of misfolded or aggregated proteins in ASH and NASH is crucial for continued hepatic viability. Cellular protein quality control systems play an important role in the pathogenesis and progression of ASH and NASH. In a recent study, elevated Mca1 expression counteracted aggregation and accumulation of misfolded proteins and extended the life span of the yeast Saccharomyces cerevisiae (Hill et al, 2014). Mca1 may also associate with Ssa1 and Hsp104 in disaggregation and fragmentation of aggregated proteins and their subsequent degradation through the ER-associated degradation (ERAD) pathway. If degradation is not available, protection of the cellular environment from a misfolded protein is accomplished by its sequestration into two distinct inclusion bodies (Kaganovich et al., 2008) called the JUNQ (JUxta Nuclear Quality control compartment) and the IPOD (Insoluble Protein Deposit). Mca1, Hsp104, Hsp40, Ydj1, Ssa1, VCP/p97, and p62 all play important roles in protein quality control systems. This study aims to measure the expression of Mca1 and related chaperones involved in protein quality control in alcoholic steatohepatitis (ASH), and nonalcoholic steatohepatitis (NASH) compared with normal control liver biopsies. Mca1, Hsp104, Hsp40, Ydj1, Ssa1, VCP/p97, and p62 expressions were measured in three to six formalin-fixed paraffin embedded ASH and NASH liver biopsies and control normal liver specimens by immunofluorescence staining and quantified by immunofluorescence intensity. Mca1, Hsp104, Ydj1 and p62 were significantly upregulated compared to control (p<0.05) in ASH specimens. Hsp40 and VCP/p97 were also uptrending in ASH. In NASH, the only significant difference was the increased expression of Hsp104 compared to control (p<0.05). Ssa1 levels were uptrending in both ASH and NASH specimens. The upregulation of Mca1, Hsp104, Ydj1 and p62 in ASH may be elicited as a response to the chronic exposure of the hepatocytes to the toxicity of alcohol. Recruitment of Mca1, Hsp104, Ydj1 and p62 may indicate that autophagy, the ERAD, JUNQ, and IPOD systems are active in ASH. Whereas in NASH, elevated Hsp104 and uptrending Ssa1 levels may indicate that autophagy and IPOD may be the only active protein quality control systems involved.

Collaboration


Dive into the Brittany Tillman's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jun Li

UCLA Medical Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge