Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Bronislava Gedulin is active.

Publication


Featured researches published by Bronislava Gedulin.


Regulatory Peptides | 2007

Biological activity of AC3174, a peptide analog of exendin-4.

Diane M. Hargrove; Eric S. Kendall; James M. Reynolds; Aung N. Lwin; John Patrick Herich; Pamela A. Smith; Bronislava Gedulin; Shawn D. Flanagan; Carolyn M. Jodka; Julie A. Hoyt; Kevin McCowen; David G. Parkes; Christen M. Anderson

Exenatide, the active ingredient of BYETTA (exenatide injection), is an incretin mimetic that has been developed for the treatment of patients with type 2 diabetes. Exenatide binds to and activates the known GLP-1 receptor with a potency comparable to that of the mammalian incretin GLP-1(7-36), thereby acting as a glucoregulatory agent. AC3174 is an analog of exenatide with leucine substituted for methionine at position 14, [Leu(14)]exendin-4. The purpose of these studies was to evaluate the glucoregulatory activity and pharmacokinetics of AC3174. In RINm5f cell membranes, the potency of AC3174 for the displacement of [(125)I]GLP-1 and activation of adenylate cyclase was similar to that of exenatide and GLP-1. In vivo, AC3174, administered as a single IP injection, significantly decreased plasma glucose concentration and glucose excursion following the administration of an oral glucose challenge in both non-diabetic (C57BL/6) and diabetic db/db mice (P<0.05 vs. vehicle-treated). The magnitude of glucose lowering of AC3174 was comparable to exenatide. The ED(50) values of AC3174 for glucose lowering (60 minute post-dose) were 1.2 microg/kg in db/db mice and 1.3 microg/kg in C57BL/6 mice. AC3174 has insulinotropic activity in vivo. Administration of AC3174 resulted in a 4-fold increase in insulin concentrations in normal mice following an IP glucose challenge. AC3174 was also shown to inhibit food intake and decrease gastric emptying in rodent models. AC3174 was stable in human plasma (>90% of parent peptide was present after 5 h of incubation). In rats, the in vivo half-life of AC3174 was 42-43 min following SC administration. In summary, AC3174 is an analog of exenatide that binds to the GLP-1 receptor in vitro and shares many of the biological and glucoregulatory activities of exenatide and GLP-1 in vivo.


International Journal of Obesity | 2004

Effects of PYY[3–36] in rodent models of diabetes and obesity

Richard A. Pittner; C X Moore; S P Bhavsar; Bronislava Gedulin; P A Smith; Carolyn M. Jodka; David G. Parkes; J R Paterniti; V P Srivastava; Andrew A. Young

BACKGROUND: Peptide YY (PYY) is a 36 amino-acid peptide secreted from ileal L cells following meals. The cleaved subpeptide PYY[3–36] is biologically active and may constitute the majority of circulating PYY-like immunoreactivity. The peptide family that includes PYY, pancreatic peptide and neuropeptide Y is noted for its orexigenic effect following intracerebroventricular administration.OBJECTIVE: To investigate the effects of peripheral (intraperitoneal and chronic subcutaneous) infusions of PYY[3–36] on food intake, body weight and glycemic indices.DESIGN/RESULTS: Food intake was measured in normal mice and in several rodent models of obesity and type II diabetes. In marked contrast to the reported central orexigenic effects, in the present study, PYY[3–36] acutely inhibited food intake by up to 45%, with an ED50 of 12.5 μg/kg in fasted female NIH/Swiss mice. A 4-week infusion reduced weight gain in female ob/ob mice, without affecting the cumulative food intake. In diet-induced obese male mice, PYY[3–36] infusion reduced cumulative food intake, weight gain and epididymal fat weight (as a fraction of carcass) with similar ED50s (466, 297 and 201 μg/kg/day, respectively) and prevented a diet-induced increase in HbA1c. Infusion at 100 μg/kg/day for 8 weeks in male fa/fa rats reduced the weight gain (288±11 vs 326±12 g in saline-infused controls; P<0.05), similar to effects in a pair-fed group. In female ob/ob and db/db mice, there was no acute effect of PYY[3-36] on plasma glucose concentrations. In male diabetic fatty Zucker rats, PYY[3–36] infused for 4 weeks reduced HbA1c and fructosamine (ED50s 30 and 44 μg/kg/day).CONCLUSION: Peripheral PYY[3–36] administration reduced the food intake, body weight gain and glycemic indices in diverse rodent models of metabolic disease of both sexes. These findings justify further exploration of the potential physiologic and therapeutic roles of PYY[3–36].


Diabetologia | 1995

Gastric emptying is accelerated in diabetic BB rats and is slowed by subcutaneous injections of amylin

Andrew A. Young; Bronislava Gedulin; William Vine; A. Percy; Timothy J. Rink

SummaryGastric emptying was measured in normal and insulin-treated spontaneously diabetic BB rats using the retention of an acaloric methylcellulose gel containing phenol red delivered by gavage. Dye content in stomachs removed after killing 20 min later was determined spectroscopically, and was compared to that in rats killed immediately after gavage to assess emptying. Diabetic rats had a markedly greater gastric emptying (90.3±1.7% passed) compared to normal Harlan Sprague Dawley rats (49.1±4.7% passed; p<0.001) and non-diabetic BB rats (61.1±9.2% passed; p<0.001). The pancreatic beta-cell peptide, amylin, which is deficient in insulin-dependent diabetes mellitus, dose-dependently inhibited gastric emptying in both normal and diabetic rats. The ED50 of the response in normal rats measured by phenol red and novel [3-3H]glucose gavage techniques was approximately 0.4 Μg. This dose was estimated to increase plasma amylin concentration by a mean of approximately 20 pmol/l to concentrations within the range observed in vivo. It is proposed that amylin could participate in the physiological control of nutrient entry into the duodenum, and that the accelerated gastric emptying seen in BB rats could be related to their lack of amylin secretion.


Metabolism-clinical and Experimental | 1996

Preliminary report Dose-responses for the slowing of gastric emptying in a rodent model by glucagon-like peptide (7–36)NH2, amylin, cholecystokinin, and other possible regulators of nutrient uptake

Andrew A. Young; Bronislava Gedulin; Timothy J. Rink

Several peptides have been proposed as regulators of nutrient release from the stomach and subsequent uptake from the gut. Using a phenol red gavage method, we compared the potencies of subcutaneously preinjected amylin, glucagon-like peptide-1 (7-36)amide (GLP-1), cholecystokinin octapeptide (CCK-8), gastric inhibitory peptide (GIP), glucagon, and pancreatic peptide on slowing the release of an acaloric gel from rat stomach. The latter three peptides did not fully inhibit gastric emptying at subcutaneous doses up to 100 micrograms. Amylin, GLP-1, and CCK-8 fully inhibited gastric emptying, with ED50s of 0.42 +/- 0.07, 6.1 +/- 0.12, and 8.5 +/- 0.20 nmol/kg +/- SE of log, respectively.


Metabolism-clinical and Experimental | 1997

Dose-response for glucagonostatic effect of amylin in rats.

Bronislava Gedulin; Timothy J. Rink; Andrew A. Young

Glucagon secretion from pancreatic alpha cells is inhibited by insulin from beta cells. Amylin is a partner hormone to insulin cosecreted in response to nutrient stimuli, which, like insulin, inhibits beta-cell secretion. We investigated whether amylin also inhibits alpha-cell secretion of glucagon in response to infused L-arginine. Rat amylin (1.2, 3.6, 12, 36, or 120 pmol/kg/min; calculated plasma concentration, 13, 47, 195, 713, and 2,950 pmol/L, respectively; n = 7, 8, 6, 4, and 7) or saline (n = 23) was infused into anesthetized male Harlan-Sprague-Dawley rats during hyperinsulinemic-euglycemic clamps, which were used to equalize the influences of glucose and insulin on glucagon secretion. Plasma glucose and insulin concentrations and mean arterial pressures were not different between amylin- and saline-treated rats during a 10-minute 2-mmol L-arginine infusion delivered during the clamps. Plasma glucagon measurements taken during and after the arginine challenge showed that compared with saline infusions, amylin administration dose-dependently suppressed the glucagon response to arginine by a maximum of 62% (incremental area under the curve [AUC] 0 to 60 minutes) with a plasma amylin EC50 of 18 pmol/L +/- 0.3 log units. These data indicate that amylin potently inhibits arginine-stimulated glucagon secretion.


Drug Development Research | 1996

Preclinical pharmacology of pramlintide in the rat: Comparisons with human and rat amylin

Andrew A. Young; William Vine; Bronislava Gedulin; Richard A. Pittner; Susan Janes; Laura S. L. Gaeta; Amy Percy; Candace X. Moore; Joy E. Koda; Timothy J. Rink; Kevin Beaumont

The pancreatic β‐cell hormone, amylin, is absent or reduced in individuals with type I diabetes mellitus and in many insulin‐treated patients with type II diabetes. Amylin replacement therapy may be beneficial in these individuals, but the pharmaceutically inconvenient physicochemical properties of native human amylin led to the development instead of the amylin agonist, [Pro25,28,29]human amylin, or pramlintide (formerly designated AC137). Here we compare for rat amylin, human amylin and pramlintide, receptor binding and biological actions in rats in vivo and in rat soleus muscle. In the rat, the spectrum of actions and pharmacokinetic and pharmacodynamic properties of pramlintide are either very similar to, or indistinguishable from, those of rat or human amylin.


American Journal of Physiology-endocrinology and Metabolism | 2010

Exenatide does not evoke pancreatitis and attenuates chemically induced pancreatitis in normal and diabetic rodents

Krystyna Tatarkiewicz; Pamela A. Smith; Emmanuel J. Sablan; Clara Polizzi; Donald E. Aumann; Christiane Villescaz; Diane M. Hargrove; Bronislava Gedulin; Melissa G. W. Lu; Lisa Adams; Tina Whisenant; Denis Roy; David G. Parkes

The risk of developing pancreatitis is elevated in type 2 diabetes and obesity. Cases of pancreatitis have been reported in type 2 diabetes patients treated with GLP-1 (GLP-1R) receptor agonists. To examine whether the GLP-1R agonist exenatide potentially induces or modulates pancreatitis, the effect of exenatide was evaluated in normal or diabetic rodents. Normal and diabetic rats received a single exenatide dose (0.072, 0.24, and 0.72 nmol/kg) or vehicle. Diabetic ob/ob or HF-STZ mice were infused with exenatide (1.2 and 7.2 nmol·kg(-1)·day(-1)) or vehicle for 4 wk. Post-exenatide treatment, pancreatitis was induced with caerulein (CRN) or sodium taurocholate (ST), and changes in plasma amylase and lipase were measured. In ob/ob mice, plasma cytokines (IL-1β, IL-2, IL-6, MCP-1, IFNγ, and TNFα) and pancreatitis-associated genes were assessed. Pancreata were weighed and examined histologically. Exenatide treatment alone did not modify plasma amylase or lipase in any models tested. Exenatide attenuated CRN-induced release of amylase and lipase in normal rats and ob/ob mice but did not modify the response to ST infusion. Plasma cytokines and pancreatic weight were unaffected by exenatide. Exenatide upregulated Reg3b but not Il6, Ccl2, Nfkb1, or Vamp8 expression. Histological analysis revealed that the highest doses of exenatide decreased CRN- or ST-induced acute inflammation, vacuolation, and acinar single cell necrosis in mice and rats, respectively. Ductal cell proliferation rates were low and similar across all groups of ob/ob mice. In conclusion, exenatide did not modify plasma amylase and lipase concentrations in rodents without pancreatitis and improved chemically induced pancreatitis in normal and diabetic rodents.


International Journal of Pharmaceutics | 2008

Pharmacokinetics and pharmacodynamics of exenatide following alternate routes of administration

Bronislava Gedulin; Pamela A. Smith; Carolyn M. Jodka; Kim Chen; Sunil Bhavsar; Loretta L. Nielsen; David G. Parkes; Andrew A. Young

Exenatide is a 39-amino acid peptide incretin mimetic approved for adjunctive treatment of type 2 diabetes. It shares several glucoregulatory activities with the mammalian hormone, glucagon-like peptide-1 (GLP-1). In clinical use, subcutaneous exenatide injections demonstrate glucoregulatory and weight loss effects with sustained plasma concentrations in the 50-100 pM range. We investigated the pharmacokinetics of exenatide in normoglycemic rats and biological activity in diabetic db/db mice after delivery to various epithelial surfaces of the intestinal and respiratory tracts. In rats, elimination kinetics were similar for all routes of administration (median k(e) 0.017 min(-1)). Bioavailability (versus intravenous administration) and C(max) per unit dose differed markedly. For gastrointestinal administration, sublingual administration invoked the highest bioavailability (0.37%); in db/db mice, potentially therapeutic concentrations were obtainable. In contrast, intraduodenal bioavailability was low (0.0053%). In regard to respiratory surfaces, bioavailability of intratracheal exenatide was up to 13.6%, and for nasal administration, 1.68%. Both routes of administration produced therapeutic plasma concentrations and glucose-lowering in db/db mice. At high doses, aerosolized exenatide also achieved effective concentrations and glucose-lowering. In summary, the intestinal tract seems to have limited potential as a route of exenatide administration, with sublingual being most promising. In contrast, the respiratory tract appears to be more viable, comparing favorably with the clinically approved subcutaneous route. Despite little optimization of the delivery formulation, exenatide bioavailability compared favorable to that of several commercially available bioactive peptides.


American Journal of Physiology-endocrinology and Metabolism | 2012

Inhibition of apical sodium-dependent bile acid transporter as a novel treatment for diabetes.

Lihong Chen; Xiaozhou Yao; Andrew A. Young; Judi A. McNulty; Donald W. Anderson; Yaping Liu; Christopher Nystrom; Dallas K. Croom; Sean Ross; Jon L. Collins; Deepak K. Rajpal; Kimberly Hamlet; Chari Smith; Bronislava Gedulin

Bile acids are recognized as metabolic modulators. The present study was aimed at evaluating the effects of a potent Asbt inhibitor (264W94), which blocks intestinal absorption of bile acids, on glucose homeostasis in Zucker Diabetic Fatty (ZDF) rats. Oral administration of 264W94 for two wk increased fecal bile acid concentrations and elevated non-fasting plasma total Glp-1. Treatment of 264W94 significantly decreased HbA1c and glucose, and prevented the drop of insulin levels typical of ZDF rats in a dose-dependent manner. An oral glucose tolerance test revealed up to two-fold increase in plasma total Glp-1 and three-fold increase in insulin in 264W94 treated ZDF rats at doses sufficient to achieve glycemic control. Tissue mRNA analysis indicated a decrease in farnesoid X receptor (Fxr) activation in small intestines and the liver but co-administration of a Fxr agonist (GW4064) did not attenuate 264W94 induced glucose lowering effects. In summary, our results demonstrate that inhibition of Asbt increases bile acids in the distal intestine, promotes Glp-1 release and may offer a new therapeutic strategy for type 2 diabetes mellitus.


International Journal of Obesity | 2010

Davalintide (AC2307), a novel amylin-mimetic peptide: enhanced pharmacological properties over native amylin to reduce food intake and body weight

Christine M. Mack; C J Soares; Julie K. Wilson; Jennifer Athanacio; V F Turek; James L. Trevaskis; Jonathan D. Roth; P A Smith; Bronislava Gedulin; Carolyn M. Jodka; B L Roland; S H Adams; A Lwin; J Herich; Kevin D. Laugero; Calvin Vu; Richard A. Pittner; J R Paterniti; Michael R. Hanley; Soumitra S. Ghosh; David G. Parkes

Objective:The current set of studies describe the in vivo metabolic actions of the novel amylin-mimetic peptide davalintide (AC2307) in rodents and compares these effects with those of the native peptide.Research design and methods:The anti-obesity effects of davalintide were examined after intraperitoneal injection or sustained peripheral infusion through subcutaneously implanted osmotic pumps. The effect of davalintide on food intake after lesioning of the area postrema (AP) and neuronal activation as measured by c-Fos, were also investigated.Results:Similar to amylin, davalintide bound with high affinity to amylin, calcitonin and calcitonin gene-related peptide receptors. Acutely, davalintide displayed greater suppression of dark-cycle feeding and an extended duration of action compared with amylin (23 versus 6 h). Davalintide had no effect on locomotor activity or kaolin consumption at doses that decreased food intake. Davalintide-induced weight loss through infusion was dose dependent, durable up to 8 weeks, fat-specific and lean-sparing, and was associated with a shift in food preference away from high-fat (palatable) chow. Metabolic rate was maintained during active weight loss. Both davalintide and amylin failed to suppress food intake after lesioning of the AP and activated similar brain nuclei, with davalintide displaying an extended duration of c-Fos expression compared with amylin (8 versus 2 h).Conclusion:Davalintide displayed enhanced in vivo metabolic activity over amylin while retaining the beneficial properties possessed by the native molecule. In vitro receptor binding, c-Fos expression and AP lesion studies suggest that the metabolic actions of davalintide and amylin occur through activation of similar neuronal pathways.

Collaboration


Dive into the Bronislava Gedulin's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge