Bronwen Wang
United States Geological Survey
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Bronwen Wang.
Arctic, Antarctic, and Alpine Research | 2010
Bronwen Wang; G. J. Michaelson; Chien-Lu Ping; Geoffrey S. Plumlee; Philip L. Hageman
Abstract The 7–8 August 2008 eruption of Kasatochi Island volcano blanketed the island in newly generated pyroclastic deposits and deposited ash into the ocean and onto nearby islands. Concentrations of water soluble Fe, Cu, and Zn determined from a 1:20 deionized water leachate of the ash were sufficient to provide short-term fertilization of the surface ocean. The 2008 pyroclastic deposits were thicker in concavities at bases of steeper slopes and thinner on steep slopes and ridge crests. By summer 2009, secondary erosion had exposed the pre-eruption soils along gulley walls and in gully bottoms on the southern and eastern slopes, respectively. Topographic and microtopographic position altered the depositional patterns of the pyroclastic flows and resulted in pre-eruption soils being buried by as little as 1 m of ash. The different erosion patterns gave rise to three surfaces on which future ecosystems will likely develop: largely pre-eruptive soils; fresh pyroclastic deposits influenced by shallowly buried, pre-eruptive soil; and thick (>1 m) pyroclastic deposits. As expected, the chemical composition differed between the pyroclastic deposits and the pre-eruptive soils. Pre-eruptive soils hold stocks of C and N important for establishing biota that are lacking in the fresh pyroclastic deposits. The pyroclastic deposits are a source for P and K but have negligible nutrient holding capacity, making these elements vulnerable to leaching loss. Consequently, the pre-eruption soils may also represent an important long-term P and K source.
Science of The Total Environment | 2016
Chris S. Eckley; Michael T. Tate; Che-Jen Lin; Mae Sexauer Gustin; Stephen R. Dent; Collin A. Eagles-Smith; Michelle A. Lutz; Kimberly P. Wickland; Bronwen Wang; John E. Gray; Grant C. Edwards; David P. Krabbenhoft; David B. Smith
Mercury (Hg) emission and deposition can occur to and from soils, and are an important component of the global atmospheric Hg budget. This paper focuses on synthesizing existing surface-air Hg flux data collected throughout the Western North American region and is part of a series of geographically focused Hg synthesis projects. A database of existing Hg flux data collected using the dynamic flux chamber (DFC) approach from almost a thousand locations was created for the Western North America region. Statistical analysis was performed on the data to identify the important variables controlling Hg fluxes and to allow spatiotemporal scaling. The results indicated that most of the variability in soil-air Hg fluxes could be explained by variations in soil-Hg concentrations, solar radiation, and soil moisture. This analysis also identified that variations in DFC methodological approaches were detectable among the field studies, with the chamber material and sampling flushing flow rate influencing the magnitude of calculated emissions. The spatiotemporal scaling of soil-air Hg fluxes identified that the largest emissions occurred from irrigated agricultural landscapes in California. Vegetation was shown to have a large impact on surface-air Hg fluxes due to both a reduction in solar radiation reaching the soil as well as from direct uptake of Hg in foliage. Despite high soil Hg emissions from some forested and other heavily vegetated regions, the net ecosystem flux (soil flux+vegetation uptake) was low. Conversely, sparsely vegetated regions showed larger net ecosystem emissions, which were similar in magnitude to atmospheric Hg deposition (except for the Mediterranean California region where soil emissions were higher). The net ecosystem flux results highlight the important role of landscape characteristics in effecting the balance between Hg sequestration and (re-)emission to the atmosphere.
Ecoscience | 2013
Lawrence R. Walker; Derek S. Sikes; Anthony R. DeGange; Stephen C. Jewett; G. J. Michaelson; Sandra L. Talbot; Stephen S. Talbot; Bronwen Wang; Jeffrey C. Williams
Abstract: Attempts to understand how communities assemble following a disturbance are challenged by the difficulty of determining the relative importance of stochastic and deterministic processes. Biological legacies, which result from organisms that survive a disturbance, can favour deterministic processes in community assembly and improve predictions of successional trajectories. Recently disturbed ecosystems are often so rapidly colonized by propagules that the role of biological legacies is obscured. We studied biological legacies on a remote volcanic island in Alaska following a devastating eruption where the role of colonization from adjacent communities was minimized. The role of biological legacies in the near shore environment was not clear, because although some kelp survived, they were presumably overwhelmed by the many vagile propagules in a marine environment. The legacy concept was most applicable to terrestrial invertebrates and plants that survived in remnants of buried soil that were exposed by post-eruption erosion. If the legacy concept is extended to include ex situ survival by transient organisms, then it was also applicable to the islands thousands of seabirds, because the seabirds survived the eruption by leaving the island and have begun to return and rebuild their nests as local conditions improve. Our multi-trophic examination of biological legacies in a successional context suggests that the relative importance of biological legacies varies with the degree of destruction, the availability of colonizing propagules, the spatial and temporal scales under consideration, and species interactions. Understanding the role of biological legacies in community assembly following disturbances can help elucidate the relative importance of colonists versus survivors, the role of priority effects among the colonists, convergence versus divergence of successional trajectories, the influence of spatial heterogeneity, and the role of island biogeographical concepts.
Environmental Microbiology | 2016
Lydia H. Zeglin; Bronwen Wang; Christopher F. Waythomas; Frederick Rainey; Sandra L. Talbot
In August 2008, Kasatochi volcano erupted and buried a small island in pyroclastic deposits and fine ash; since then, microbes, plants and birds have begun to re-colonize the initially sterile surface. Five years post-eruption, bacterial 16S rRNA gene and fungal internal transcribed spacer (ITS) copy numbers and extracellular enzyme activity (EEA) potentials were one to two orders of magnitude greater in pyroclastic materials with organic matter (OM) inputs relative to those without, despite minimal accumulation of OM (< 0.2%C). When normalized by OM levels, post-eruptive surfaces with OM inputs had the highest β-glucosidase, phosphatase, NAGase and cellobiohydrolase activities, and had microbial population sizes approaching those in reference soils. In contrast, the strongest factor determining bacterial community composition was the dominance of plants versus birds as OM input vectors. Although soil pH ranged from 3.9 to 7.0, and %C ranged 100×, differentiation between plant- and bird-associated microbial communities suggested that cell dispersal or nutrient availability are more likely drivers of assembly than pH or OM content. This study exemplifies the complex relationship between microbial cell dispersal, soil geochemistry, and microbial structure and function; and illustrates the potential for soil microbiota to be resilient to disturbance.
Arctic, Antarctic, and Alpine Research | 2016
G. J. Michaelson; Bronwen Wang; Chien-Lu Ping
ABSTRACT In the four years after the 2008 eruption and burial of Kasatochi Island volcano, erosion and the return of bird activity have resulted in new and altered land surfaces and initiation of ecosystem recovery. We examined fertility characteristics of the recently deposited pyroclastic surfaces, patches of legacy pre-eruptive surface soil (LS), and a post-eruptive surface with recent bird roosting activity. Pyroclastic materials were found lacking in N, but P, K, and other macronutrients were in sufficient supply for plants. Erosion and leaching are moving mobile P and Fe downslope to deposition fan areas. Legacy soil patches that currently support plants have available-N at levels (10–22 mg N kg-1) similar to those added by birds in a recent bird roosting area. Roosting increased surface available N from <1 mg N kg-1 in the new pyroclastic surfaces to up to 42 mg N kg-1 and increased soil biological respiration of CO2 from essentially zero to a level about 40% that of the LS surface. Laboratory plant growth trials using Lupinus nootkatensis and Leymus mollis indicated that the influence of eroded and redeposited LS in amounts as little as 10% by volume mixed with new pyroclastic materials could aid plant recovery by supplying vital N and soil biota to plants as propagules are introduced to the new surface. Erosion-exposure of fertile pre-eruptive soils and erosion-mixing of pre-eruptive soils with newly erupted materials, along with inputs of nutrients from bird activities, each will exert significant influences on the surface fertility and recovery pattern of the new post-eruptive Kasatochi volcano. For this environment, these influences could help to speed recovery of a more diverse plant community by providing N (LS and bird inputs) as alternatives to relying most heavily on N-fixing plants to build soil fertility.
Archive | 2015
Deborah Bergfeld; Tina Neal; Game McGimsey; Cindy Werner; Chris Waythomas; Jen Lewicki; Taryn Lopez; Maggie Mangan; Tom Miller; A. K. Diefenbach; Janet R. Schaefer; Michelle L. Coombs; Bronwen Wang; Kirsten P. Nicolaysen; Pavel E. Izbekov; Zebulon Maharrey; Mark A. Huebner; Andrew G. Hunt; John A. Fitzpatrick; Gary Freeburg
This report contains the chemical and isotopic data from thermal waters and gases collected from the Aleutian Arc over the past 20 years, where such data remain unpublished or only published in part.
Geochemistry Geophysics Geosystems | 2008
Janet R. Schaefer; William E. Scott; William C. Evans; Janet C. Jorgenson; Robert G. McGimsey; Bronwen Wang
Chinese Journal of Geochemistry | 2006
Janet R. Schaefer; William C. Evans; Bronwen Wang; William E. Scott; Robert G. McGimsey; Janet C. Jorgenson
Report of Investigations of the Alaska Department of Natural Resources, Division of Geological & Geophysical Surveys | 2013
Janet R. Schaefer; William E. Scott; William C. Evans; Bronwen Wang; Robert G. McGimsey
Geochemistry Geophysics Geosystems | 2008
Janet R. Schaefer; William E. Scott; William C. Evans; Janet C. Jorgenson; Robert G. McGimsey; Bronwen Wang