Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Bruce A. Stanton is active.

Publication


Featured researches published by Bruce A. Stanton.


Nature Reviews Molecular Cell Biology | 2006

New insights into cystic fibrosis: molecular switches that regulate CFTR

William B. Guggino; Bruce A. Stanton

Cystic fibrosis transmembrane conductance regulator (CFTR), a Cl−-selective ion channel, is a prototypic member of the ATP-binding cassette transporter superfamily that is expressed in several organs. In these organs, CFTR assembles into large, dynamic macromolecular complexes that contain signalling molecules, kinases, transport proteins, PDZ-domain-containing proteins, myosin motors, Rab GTPases, and SNAREs. Understanding how these complexes regulate the intracellular trafficking and activity of CFTR provides a unique insight into the aetiology of cystic fibrosis and other diseases.


Journal of Clinical Investigation | 1999

A PDZ-interacting domain in CFTR is an apical membrane polarization signal

Bryan D. Moyer; Jerod S. Denton; Katherine H. Karlson; Donna Reynolds; Shusheng Wang; John E. Mickle; Michal Milewski; Garry R. Cutting; William B. Guggino; Min Li; Bruce A. Stanton

Polarization of the cystic fibrosis transmembrane conductance regulator (CFTR), a cAMP-activated chloride channel, to the apical plasma membrane of epithelial cells is critical for vectorial transport of chloride in a variety of epithelia, including the airway, pancreas, intestine, and kidney. However, the motifs that localize CFTR to the apical membrane are unknown. We report that the last 3 amino acids in the COOH-terminus of CFTR (T-R-L) comprise a PDZ-interacting domain that is required for the polarization of CFTR to the apical plasma membrane in human airway and kidney epithelial cells. In addition, the CFTR mutant, S1455X, which lacks the 26 COOH-terminal amino acids, including the PDZ-interacting domain, is mispolarized to the lateral membrane. We also demonstrate that CFTR binds to ezrin-radixin-moesin-binding phosphoprotein 50 (EBP50), an apical membrane PDZ domain-containing protein. We propose that COOH-terminal deletions of CFTR, which represent about 10% of CFTR mutations, result in defective vectorial chloride transport, partly by altering the polarized distribution of CFTR in epithelial cells. Moreover, our data demonstrate that PDZ-interacting domains and PDZ domain-containing proteins play a key role in the apical polarization of ion channels in epithelial cells.


Journal of Biological Chemistry | 2002

PDZ Domain Interaction Controls the Endocytic Recycling of the Cystic Fibrosis Transmembrane Conductance Regulator

Agnieszka Swiatecka-Urban; Marc Duhaime; Bonita Coutermarsh; Katherine H. Karlson; James Collawn; Michal Milewski; Garry R. Cutting; William B. Guggino; George M. Langford; Bruce A. Stanton

The C terminus of CFTR contains a PDZ interacting domain that is required for the polarized expression of cystic fibrosis transmembrane conductance regulator (CFTR) in the apical plasma membrane of polarized epithelial cells. To elucidate the mechanism whereby the PDZ interacting domain mediates the polarized expression of CFTR, Madin-Darby canine kidney cells were stably transfected with wild type (wt-CFTR) or C-terminally truncated human CFTR (CFTR-ΔTRL). We tested the hypothesis that the PDZ interacting domain regulates sorting of CFTR from the Golgi to the apical plasma membrane. Pulse-chase studies in combination with domain-selective cell surface biotinylation revealed that newly synthesized wt-CFTR and CFTR-ΔTRL were targeted equally to the apical and basolateral membranes in a nonpolarized fashion. Thus, the PDZ interacting domain is not an apical sorting motif. Deletion of the PDZ interacting domain reduced the half-life of CFTR in the apical membrane from ∼24 to ∼13 h but had no effect on the half-life of CFTR in the basolateral membrane. Thus, the PDZ interacting domain is an apical membrane retention motif. Next, we examined the hypothesis that the PDZ interacting domain affects the apical membrane half-life of CFTR by altering its endocytosis and/or endocytic recycling. Endocytosis of wt-CFTR and CFTR-ΔTRL did not differ. However, endocytic recycling of CFTR-ΔTRL was decreased when compared with wt-CFTR. Thus, deletion of the PDZ interacting domain reduced the half-life of CFTR in the apical membrane by decreasing CFTR endocytic recycling. Our results identify a new role for PDZ proteins in regulating the endocytic recycling of CFTR in polarized epithelial cells.


Pulmonary Pharmacology & Therapeutics | 2008

Pseudomonas aeruginosa biofilm formation in the cystic fibrosis airway.

Sophie Moreau-Marquis; Bruce A. Stanton; George A. O’Toole

The cystic fibrosis (CF) lung is chronically inflamed and infected by Pseudomonas aeruginosa, which is a major cause of morbidity and mortality in this genetic disease. Although aerosolization of Tobramycin into the airway of CF patients improves outcomes, the lungs of CF patients, even those receiving antibiotic therapy, are persistently colonized by P. aeruginosa. Recent studies suggest that the antibiotic resistance of P. aeruginosa in the CF lung is due to the formation of drug resistant biofilms, which are defined as communities of microbes associated with surfaces or interfaces, and whose growth is facilitated by thick and dehydrated mucus in the CF lung. In this review, we discuss some of the current models used to study biofilm formation in the context of biotic surfaces, such as airway cells, as well as the contribution of host-derived factors, including DNA, actin and mucus, to the formation of these microbial communities. We suggest that better in vitro models are required, both to understand the interaction of P. aeruginosa with the host airway, and as models to validate new therapeutics, whether targeted at bacteria or host.


Nature Reviews Molecular Cell Biology | 2006

Mechanisms of disease: New insights into cystic fibrosis: molecular switches that regulate CFTR

William B. Guggino; Bruce A. Stanton

Cystic fibrosis transmembrane conductance regulator (CFTR), a Cl−-selective ion channel, is a prototypic member of the ATP-binding cassette transporter superfamily that is expressed in several organs. In these organs, CFTR assembles into large, dynamic macromolecular complexes that contain signalling molecules, kinases, transport proteins, PDZ-domain-containing proteins, myosin motors, Rab GTPases, and SNAREs. Understanding how these complexes regulate the intracellular trafficking and activity of CFTR provides a unique insight into the aetiology of cystic fibrosis and other diseases.


Journal of Biological Chemistry | 2005

The Short Apical Membrane Half-life of Rescued ΔF508-Cystic Fibrosis Transmembrane Conductance Regulator (CFTR) Results from Accelerated Endocytosis of ΔF508-CFTR in Polarized Human Airway Epithelial Cells

Agnieszka Swiatecka-Urban; Andrea N. Brown; Sophie Moreau-Marquis; Janhavi Renuka; Bonita Coutermarsh; Roxanna Barnaby; Katherine H. Karlson; Terence R. Flotte; Mitsunori Fukuda; George M. Langford; Bruce A. Stanton

The most common mutation in the cystic fibrosis transmembrane conductance regulator (CFTR) gene in individuals with cystic fibrosis, ΔF508, causes retention of ΔF508-CFTR in the endoplasmic reticulum and leads to the absence of CFTR Cl- channels in the apical plasma membrane. Rescue of ΔF508-CFTR by reduced temperature or chemical means reveals that the ΔF508 mutation reduces the half-life of ΔF508-CFTR in the apical plasma membrane. Because ΔF508-CFTR retains some Cl- channel activity, increased expression of ΔF508-CFTR in the apical membrane could serve as a potential therapeutic approach for cystic fibrosis. However, little is known about the mechanisms responsible for the short apical membrane half-life of ΔF508-CFTR in polarized human airway epithelial cells. Accordingly, the goal of this study was to determine the cellular defects in the trafficking of rescued ΔF508-CFTR that lead to the decreased apical membrane half-life of ΔF508-CFTR in polarized human airway epithelial cells. We report that in polarized human airway epithelial cells (CFBE41o-) the ΔF508 mutation increased endocytosis of CFTR from the apical membrane without causing a global endocytic defect or affecting the endocytic recycling of CFTR in the Rab11a-specific apical recycling compartment.


Journal of Biological Chemistry | 1998

Membrane Trafficking of the Cystic Fibrosis Gene Product, Cystic Fibrosis Transmembrane Conductance Regulator, Tagged with Green Fluorescent Protein in Madin-Darby Canine Kidney Cells

Bryan D. Moyer; Johannes Loffing; Erik M. Schwiebert; Dominique Loffing-Cueni; Patricia A. Halpin; Katherine H. Karlson; Iskandar I. Ismailov; William B. Guggino; George M. Langford; Bruce A. Stanton

The mechanism by which cAMP stimulates cystic fibrosis transmembrane conductance regulator (CFTR)-mediated chloride (Cl−) secretion is cell type-specific. By using Madin-Darby canine kidney (MDCK) type I epithelial cells as a model, we tested the hypothesis that cAMP stimulates Cl− secretion by stimulating CFTR Cl− channel trafficking from an intracellular pool to the apical plasma membrane. To this end, we generated a green fluorescent protein (GFP)-CFTR expression vector in which GFP was linked to the N terminus of CFTR. GFP did not alter CFTR function in whole cell patch-clamp or planar lipid bilayer experiments. In stably transfected MDCK type I cells, GFP-CFTR localization was substratum-dependent. In cells grown on glass coverslips, GFP-CFTR was polarized to the basolateral membrane, whereas in cells grown on permeable supports, GFP-CFTR was polarized to the apical membrane. Quantitative confocal fluorescence microscopy and surface biotinylation experiments demonstrated that cAMP did not stimulate detectable GFP-CFTR translocation from an intracellular pool to the apical membrane or regulate GFP-CFTR endocytosis. Disruption of the microtubular cytoskeleton with colchicine did not affect cAMP-stimulated Cl− secretion or GFP-CFTR expression in the apical membrane. We conclude that cAMP stimulates CFTR-mediated Cl− secretion in MDCK type I cells by activating channels resident in the apical plasma membrane.


The Journal of Physiology | 1999

Functional domains within the degenerin/epithelial sodium channel (Deg/ENaC) superfamily of ion channels

Dale J. Benos; Bruce A. Stanton

Application of recombinant DNA technology and electrophysiology to the study of amiloride‐sensitive Na+ channels has resulted in an enormous increase in the understanding of the structure‐function relationships of these channels. Moreover, this knowledge has permitted the elucidation of the physiological roles of these ion channels in cellular processes as diverse as transepithelial salt and water movement, taste perception, volume regulation, nociception, neuronal function, mechanosensation, and even defaecation. Although members of this ever‐growing superfamily of ion channels (the Deg/ENaC superfamily) share little amino acid identity, they are all organized similarly, namely, two short N‐ and C‐termini, two short membrane‐spanning segments, and a very large extracellular loop domain. In this brief Topical Review, we discuss the structural features of each domain of this Deg/ENaC superfamily and, using ENaC as a model, show how each domain relates to overall channel function.


Mbio | 2012

Serial Analysis of the Gut and Respiratory Microbiome in Cystic Fibrosis in Infancy: Interaction between Intestinal and Respiratory Tracts and Impact of Nutritional Exposures

Juliette C. Madan; D. C. Koestler; Bruce A. Stanton; L. Davidson; Lisa A. Moulton; Molly L. Housman; J. H. Moore; Margaret F. Guill; Hilary G. Morrison; Mitchell L. Sogin; Thomas H. Hampton; Margaret R. Karagas; P. E. Palumbo; James A. Foster; Patricia L. Hibberd; George A. O'Toole

ABSTRACT Pulmonary damage caused by chronic colonization of the cystic fibrosis (CF) lung by microbial communities is the proximal cause of respiratory failure. While there has been an effort to document the microbiome of the CF lung in pediatric and adult patients, little is known regarding the developing microflora in infants. We examined the respiratory and intestinal microbiota development in infants with CF from birth to 21 months. Distinct genera dominated in the gut compared to those in the respiratory tract, yet some bacteria overlapped, demonstrating a core microbiota dominated by Veillonella and Streptococcus. Bacterial diversity increased significantly over time, with evidence of more rapidly acquired diversity in the respiratory tract. There was a high degree of concordance between the bacteria that were increasing or decreasing over time in both compartments; in particular, a significant proportion (14/16 genera) increasing in the gut were also increasing in the respiratory tract. For 7 genera, gut colonization presages their appearance in the respiratory tract. Clustering analysis of respiratory samples indicated profiles of bacteria associated with breast-feeding, and for gut samples, introduction of solid foods even after adjustment for the time at which the sample was collected. Furthermore, changes in diet also result in altered respiratory microflora, suggesting a link between nutrition and development of microbial communities in the respiratory tract. Our findings suggest that nutritional factors and gut colonization patterns are determinants of the microbial development of respiratory tract microbiota in infants with CF and present opportunities for early intervention in CF with altered dietary or probiotic strategies. IMPORTANCE While efforts have been focused on assessing the microbiome of pediatric and adult cystic fibrosis (CF) patients to understand how chronic colonization by these microbes contributes to pulmonary damage, little is known regarding the earliest development of respiratory and gut microflora in infants with CF. Our findings suggest that colonization of the respiratory tract by microbes is presaged by colonization of the gut and demonstrated a role of nutrition in development of the respiratory microflora. Thus, targeted dietary or probiotic strategies may be an effective means to change the course of the colonization of the CF lung and thereby improve patient outcomes. While efforts have been focused on assessing the microbiome of pediatric and adult cystic fibrosis (CF) patients to understand how chronic colonization by these microbes contributes to pulmonary damage, little is known regarding the earliest development of respiratory and gut microflora in infants with CF. Our findings suggest that colonization of the respiratory tract by microbes is presaged by colonization of the gut and demonstrated a role of nutrition in development of the respiratory microflora. Thus, targeted dietary or probiotic strategies may be an effective means to change the course of the colonization of the CF lung and thereby improve patient outcomes.


Infection and Immunity | 2008

In Vitro Analysis of Tobramycin-Treated Pseudomonas aeruginosa Biofilms on Cystic Fibrosis-Derived Airway Epithelial Cells

Gregory G. Anderson; Sophie Moreau-Marquis; Bruce A. Stanton; George A. O'Toole

ABSTRACT P. aeruginosa forms biofilms in the lungs of individuals with cystic fibrosis (CF); however, there have been no effective model systems for studying biofilm formation in the CF lung. We have developed a tissue culture system for growth of P. aeruginosa biofilms on CF-derived human airway cells that promotes the formation of highly antibiotic-resistant microcolonies, which produce an extracellular polysaccharide matrix and require the known abiotic biofilm formation genes flgK and pilB. Treatment of P. aeruginosa biofilms with tobramycin reduced the virulence of the biofilms both by reducing bacterial numbers and by altering virulence gene expression. We performed microarray analysis of these biofilms on epithelial cells after treatment with tobramycin, and we compared these results with gene expression of (i) tobramycin-treated planktonic P. aeruginosa and (ii) tobramycin-treated P. aeruginosa biofilms on an abiotic surface. Despite the conservation in functions required to form a biofilm, our results show that the responses to tobramycin treatment of biofilms grown on biotic versus abiotic surfaces are different, as exemplified by downregulation of genes involved in Pseudomonas quinolone signal biosynthesis specifically in epithelial cell-grown biofilms versus plastic-grown biofilms. We also identified the gene PA0913, which is upregulated by tobramycin specifically in biofilms grown on CF airway cells and codes for a probable magnesium transporter, MgtE. Mutation of the PA0913 gene increased the bacterial virulence of biofilms on the epithelial cells, consistent with a role for the gene in the suppression of bacterial virulence. Taken together, our data show that analysis of biofilms on airway cells provides new insights into the interaction of these microbial communities with the host.

Collaboration


Dive into the Bruce A. Stanton's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

William B. Guggino

Johns Hopkins University School of Medicine

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Joseph R. Shaw

University of Birmingham

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge