Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Katherine H. Karlson is active.

Publication


Featured researches published by Katherine H. Karlson.


Journal of Clinical Investigation | 1999

A PDZ-interacting domain in CFTR is an apical membrane polarization signal

Bryan D. Moyer; Jerod S. Denton; Katherine H. Karlson; Donna Reynolds; Shusheng Wang; John E. Mickle; Michal Milewski; Garry R. Cutting; William B. Guggino; Min Li; Bruce A. Stanton

Polarization of the cystic fibrosis transmembrane conductance regulator (CFTR), a cAMP-activated chloride channel, to the apical plasma membrane of epithelial cells is critical for vectorial transport of chloride in a variety of epithelia, including the airway, pancreas, intestine, and kidney. However, the motifs that localize CFTR to the apical membrane are unknown. We report that the last 3 amino acids in the COOH-terminus of CFTR (T-R-L) comprise a PDZ-interacting domain that is required for the polarization of CFTR to the apical plasma membrane in human airway and kidney epithelial cells. In addition, the CFTR mutant, S1455X, which lacks the 26 COOH-terminal amino acids, including the PDZ-interacting domain, is mispolarized to the lateral membrane. We also demonstrate that CFTR binds to ezrin-radixin-moesin-binding phosphoprotein 50 (EBP50), an apical membrane PDZ domain-containing protein. We propose that COOH-terminal deletions of CFTR, which represent about 10% of CFTR mutations, result in defective vectorial chloride transport, partly by altering the polarized distribution of CFTR in epithelial cells. Moreover, our data demonstrate that PDZ-interacting domains and PDZ domain-containing proteins play a key role in the apical polarization of ion channels in epithelial cells.


Journal of Biological Chemistry | 2005

The Short Apical Membrane Half-life of Rescued ΔF508-Cystic Fibrosis Transmembrane Conductance Regulator (CFTR) Results from Accelerated Endocytosis of ΔF508-CFTR in Polarized Human Airway Epithelial Cells

Agnieszka Swiatecka-Urban; Andrea N. Brown; Sophie Moreau-Marquis; Janhavi Renuka; Bonita Coutermarsh; Roxanna Barnaby; Katherine H. Karlson; Terence R. Flotte; Mitsunori Fukuda; George M. Langford; Bruce A. Stanton

The most common mutation in the cystic fibrosis transmembrane conductance regulator (CFTR) gene in individuals with cystic fibrosis, ΔF508, causes retention of ΔF508-CFTR in the endoplasmic reticulum and leads to the absence of CFTR Cl- channels in the apical plasma membrane. Rescue of ΔF508-CFTR by reduced temperature or chemical means reveals that the ΔF508 mutation reduces the half-life of ΔF508-CFTR in the apical plasma membrane. Because ΔF508-CFTR retains some Cl- channel activity, increased expression of ΔF508-CFTR in the apical membrane could serve as a potential therapeutic approach for cystic fibrosis. However, little is known about the mechanisms responsible for the short apical membrane half-life of ΔF508-CFTR in polarized human airway epithelial cells. Accordingly, the goal of this study was to determine the cellular defects in the trafficking of rescued ΔF508-CFTR that lead to the decreased apical membrane half-life of ΔF508-CFTR in polarized human airway epithelial cells. We report that in polarized human airway epithelial cells (CFBE41o-) the ΔF508 mutation increased endocytosis of CFTR from the apical membrane without causing a global endocytic defect or affecting the endocytic recycling of CFTR in the Rab11a-specific apical recycling compartment.


Journal of Biological Chemistry | 1998

Membrane Trafficking of the Cystic Fibrosis Gene Product, Cystic Fibrosis Transmembrane Conductance Regulator, Tagged with Green Fluorescent Protein in Madin-Darby Canine Kidney Cells

Bryan D. Moyer; Johannes Loffing; Erik M. Schwiebert; Dominique Loffing-Cueni; Patricia A. Halpin; Katherine H. Karlson; Iskandar I. Ismailov; William B. Guggino; George M. Langford; Bruce A. Stanton

The mechanism by which cAMP stimulates cystic fibrosis transmembrane conductance regulator (CFTR)-mediated chloride (Cl−) secretion is cell type-specific. By using Madin-Darby canine kidney (MDCK) type I epithelial cells as a model, we tested the hypothesis that cAMP stimulates Cl− secretion by stimulating CFTR Cl− channel trafficking from an intracellular pool to the apical plasma membrane. To this end, we generated a green fluorescent protein (GFP)-CFTR expression vector in which GFP was linked to the N terminus of CFTR. GFP did not alter CFTR function in whole cell patch-clamp or planar lipid bilayer experiments. In stably transfected MDCK type I cells, GFP-CFTR localization was substratum-dependent. In cells grown on glass coverslips, GFP-CFTR was polarized to the basolateral membrane, whereas in cells grown on permeable supports, GFP-CFTR was polarized to the apical membrane. Quantitative confocal fluorescence microscopy and surface biotinylation experiments demonstrated that cAMP did not stimulate detectable GFP-CFTR translocation from an intracellular pool to the apical membrane or regulate GFP-CFTR endocytosis. Disruption of the microtubular cytoskeleton with colchicine did not affect cAMP-stimulated Cl− secretion or GFP-CFTR expression in the apical membrane. We conclude that cAMP stimulates CFTR-mediated Cl− secretion in MDCK type I cells by activating channels resident in the apical plasma membrane.


Journal of Biological Chemistry | 2007

Myosin Vb Is Required for Trafficking of the Cystic Fibrosis Transmembrane Conductance Regulator in Rab11a-specific Apical Recycling Endosomes in Polarized Human Airway Epithelial Cells

Agnieszka Swiatecka-Urban; Laleh Talebian; Eiko Kanno; Sophie Moreau-Marquis; Bonita Coutermarsh; Karyn Hansen; Katherine H. Karlson; Roxanna Barnaby; Richard E. Cheney; George M. Langford; Mitsunori Fukuda; Bruce A. Stanton

Cystic fibrosis transmembrane conductance regulator (CFTR)-mediated Cl- secretion across fluid-transporting epithelia is regulated, in part, by modulating the number of CFTR Cl- channels in the plasma membrane by adjusting CFTR endocytosis and recycling. However, the mechanisms that regulate CFTR recycling in airway epithelial cells remain unknown, at least in part, because the recycling itineraries of CFTR in these cells are incompletely understood. In a previous study, we demonstrated that CFTR undergoes trafficking in Rab11a-specific apical recycling endosomes in human airway epithelial cells. Myosin Vb is a plus-end-directed, actin-based mechanoenzyme that facilitates protein trafficking in Rab11a-specific recycling vesicles in several cell model systems. There are no published studies examining the role of myosin Vb in airway epithelial cells. Thus, the goal of this study was to determine whether myosin Vb facilitates CFTR recycling in polarized human airway epithelial cells. Endogenous CFTR formed a complex with endogenous myosin Vb and Rab11a. Silencing myosin Vb by RNA-mediated interference decreased the expression of wild-type CFTR and ΔF508-CFTR in the apical membrane and decreased CFTR-mediated Cl- secretion across polarized human airway epithelial cells. A recombinant tail domain fragment of myosin Vb attenuated the plasma membrane expression of CFTR by arresting CFTR recycling. The dominant-negative effect was dependent on the ability of the myosin Vb tail fragment to interact with Rab11a. Taken together, these data indicate that myosin Vb is required for CFTR recycling in Rab11a-specific apical recycling endosomes in polarized human airway epithelial cells.


American Journal of Physiology-renal Physiology | 1999

Nucleotides regulate NaCl transport in mIMCD-K2 cells via P2X and P2Y purinergic receptors

D. E. McCoy; Amanda L. Taylor; Brian A. Kudlow; Katherine H. Karlson; Margaret J. Slattery; Lisa M. Schwiebert; Erik M. Schwiebert; Bruce A. Stanton

Extracellular nucleotides regulate NaCl transport in some epithelia. However, the effects of nucleotide agonists on NaCl transport in the renal inner medullary collecting duct (IMCD) are not known. The objective of this study was to determine whether ATP and related nucleotides regulate NaCl transport across mouse IMCD cell line (mIMCD-K2) epithelial monolayers and, if so, via what purinergic receptor subtypes. ATP and UTP inhibited Na+ absorption [measured via Na+ short-circuit current[Formula: see text])] and stimulated Cl- secretion [measured via Cl-short-circuit current ([Formula: see text])]. Using selective P2 agonists, we report that P2X and P2Y purinoceptors regulate [Formula: see text] and[Formula: see text]. By RT-PCR, two P2X receptor channels (P2X3, P2X4) and two P2Y G protein-coupled receptors (P2Y1, P2Y2) were identified. Functional localization of P2 purinoceptors suggest that [Formula: see text] is stimulated by apical membrane-resident P2Y purinoceptors and P2X receptor channels, whereas[Formula: see text] is inhibited by apical membrane-resident P2Y purinoceptors and P2X receptor channels. Together, we conclude that nucleotide agonists inhibit[Formula: see text] across mIMCD-K2 monolayers through interactions with P2X and P2Y purinoceptors expressed on the apical plasma membrane, whereas extracellular nucleotides stimulate [Formula: see text]through interactions with P2X and P2Y purinoceptors expressed on the apical plasma membrane.


Journal of Biological Chemistry | 2004

Myosin VI Regulates Endocytosis of the Cystic Fibrosis Transmembrane Conductance Regulator

Agnieszka Swiatecka-Urban; Cary R. Boyd; Bonita Coutermarsh; Katherine H. Karlson; Roxanna Barnaby; Laura Aschenbrenner; George M. Langford; Tama Hasson; Bruce A. Stanton

The cystic fibrosis transmembrane conductance regulator (CFTR) is a cyclic AMP-regulated Cl- channel expressed in the apical plasma membrane in fluid-transporting epithelia. Although CFTR is rapidly endocytosed from the apical membrane of polarized epithelial cells and efficiently recycled back to the plasma membrane, little is known about the molecular mechanisms regulating CFTR endocytosis and endocytic recycling. Myosin VI, an actin-dependent, minus-end directed mechanoenzyme, has been implicated in clathrin-mediated endocytosis in epithelial cells. The goal of this study was to determine whether myosin VI regulates CFTR endocytosis. Endogenous, apical membrane CFTR in polarized human airway epithelial cells (Calu-3) formed a complex with myosin VI, the myosin VI adaptor protein Disabled 2 (Dab2), and clathrin. The tail domain of myosin VI, a dominant-negative recombinant fragment, displaced endogenous myosin VI from interacting with Dab2 and CFTR and increased the expression of CFTR in the plasma membrane by reducing CFTR endocytosis. However, the myosin VI tail fragment had no effect on the recycling of endocytosed CFTR or on fluid-phase endocytosis. CFTR endocytosis was decreased by cytochalasin D, an actin-filament depolymerizing agent. Taken together, these data indicate that myosin VI and Dab2 facilitate CFTR endocytosis by a mechanism that requires actin filaments.


Journal of Clinical Investigation | 1992

Adenosine regulates a chloride channel via protein kinase C and a G protein in a rabbit cortical collecting duct cell line.

Erik M. Schwiebert; Katherine H. Karlson; Peter A. Friedman; Paul Dietl; William S. Spielman; Bruce A. Stanton

We examined the regulation by adenosine of a 305-pS chloride (Cl-) channel in the apical membrane of a continuous cell line derived from rabbit cortical collecting duct (RCCT-28A) using the patch clamp technique. Stimulation of A1 adenosine receptors by N6-cyclohexyladenosine (CHA) activated the channel in cell-attached patches. Phorbol 12,13-didecanoate and 1-oleoyl 2-acetylglycerol, activators of protein kinase C (PKC), mimicked the effect of CHA, whereas the PKC inhibitor H7 blocked the action of CHA. Stimulation of A1 adenosine receptors also increased the production of diacylglycerol, an activator of PKC. Exogenous PKC added to the cytoplasmic face of inside-out patches also stimulated the Cl- channel. Alkaline phosphatase reversed PKC activation. These results show that stimulation of A1 adenosine receptors activates a 305-pS Cl-channel in the apical membrane by a phosphorylation-dependent pathway involving PKC. In previous studies, we showed that the protein G alpha i-3 activated the 305-pS Cl- channel (Schwiebert et al. 1990. J. Biol. Chem. 265:7725-7728). We, therefore, tested the hypothesis that PKC activates the channel by a G protein-dependent pathway. In inside-out patches, pertussis toxin blocked PKC activation of the channel. In contrast, H7 did not prevent G protein activation of the channel. We conclude that adenosine activates a 305-pS Cl- channel in the apical membrane of RCCT-28A cells by a membrane-delimited pathway involving an A1 adenosine receptor, phospholipase C, diacylglycerol, PKC, and a G protein. Because we have shown, in previous studies, that this Cl- channel participates in the regulatory volume decrease subsequent to cell swelling, adenosine release during ischemic cell swelling may activate the Cl-channel and restore cell volume.


Journal of Biological Chemistry | 2007

Targeting CAL as a Negative Regulator of ΔF508-CFTR Cell-Surface Expression AN RNA INTERFERENCE AND STRUCTURE-BASED MUTAGENETIC APPROACH

Michael Wolde; Abigail M. Fellows; Jie Cheng; Aleksandr Kivenson; Bonita Coutermarsh; Laleh Talebian; Katherine H. Karlson; Andrea Piserchio; Dale F. Mierke; Bruce A. Stanton; William B. Guggino; Dean R. Madden

PDZ domains are ubiquitous peptide-binding modules that mediate protein-protein interactions in a wide variety of intracellular trafficking and localization processes. These include the pathways that regulate the membrane trafficking and endocytic recycling of the cystic fibrosis transmembrane conductance regulator (CFTR), an epithelial chloride channel mutated in patients with cystic fibrosis. Correspondingly, a number of PDZ proteins have now been identified that directly or indirectly interact with the C terminus of CFTR. One of these is CAL, whose overexpression in heterologous cells directs the lysosomal degradation of WT-CFTR in a dose-dependent fashion and reduces the amount of CFTR found at the cell surface. Here, we show that RNA interference targeting endogenous CAL specifically increases cell-surface expression of the disease-associated ΔF508-CFTR mutant and thus enhances transepithelial chloride currents in a polarized human patient bronchial epithelial cell line. We have reconstituted the CAL-CFTR interaction in vitro from purified components, demonstrating for the first time that the binding is direct and allowing us to characterize its components biochemically and biophysically. To test the hypothesis that inhibition of the binding site could also reverse CAL-mediated suppression of CFTR, a three-dimensional homology model of the CAL·CFTR complex was constructed and used to generate a CAL mutant whose binding pocket is correctly folded but has lost its ability to bind CFTR. Although produced at the same levels as wild-type protein, the mutant does not affect CFTR expression levels. Taken together, our data establish CAL as a candidate therapeutic target for correction of post-maturational trafficking defects in cystic fibrosis.


Journal of Biological Chemistry | 1999

The NH2 Terminus of the Epithelial Sodium Channel Contains an Endocytic Motif

Michael L. Chalfant; Jerod S. Denton; Anne Lynn B Langloh; Katherine H. Karlson; Johannes Loffing; Dale J. Benos; Bruce A. Stanton

An epithelial sodium channel (ENaC) is composed of three homologous subunits: α, β, and γ. To elucidate the function of the cytoplasmic, NH2 terminus of rat ENaC (rENaC) subunits, a series of mutant cDNAs was constructed and the cRNAs for all three subunits were expressed in Xenopusoocytes. Amiloride-sensitive Na+ currents (INa) were measured by the two-electrode voltage clamp technique. Deletion of the cytoplasmic, NH2 terminus of α (Δ2–109), β (Δ2–49), or γ-rENaC (Δ2–53) dramatically reduced INa. A series of progressive, NH2-terminal deletions of α-rENaC were constructed to identify motifs that regulate INa. Deletion of amino acids 2–46 had no effect on INa: however, deletion of amino acids 2–51, 2–55, 2–58, and 2–67 increased INa by ∼4-fold. By contrast, deletion of amino acids 2–79, 2–89, 2–100, and 2–109 eliminated INa. To evaluate the mechanism whereby Δ2–67-α-rENaC increased INa, single channels were evaluated by patch clamp. The single-channel conductance and open probability of α,β,γ-rENaC and Δ2–67-α,β,γ-rENaC were similar. However, the number of active channels in the membrane increased from 6 ± 1 channels per patch with α,β,γ-rENaC to 11 ± 1 channels per patch with Δ2–67-α,β,γ-rENaC. Laser scanning confocal microscopy confirmed that there were more Δ2–67-α,β,γ-rENaC channels in the plasma membrane than α,β,γ-rENaC channels. Deletion of amino acids 2–67 in α-rENaC reduced the endocytic retrieval of channels from the plasma membrane and increased the half-life of the channel in the membrane from 1.1 ± 0.2 to 3.5 ± 1.1 h. We conclude that the cytoplasmic, NH2 terminus of α-, β-, and γ-rENaC is required for channel activity. The cytoplasmic, NH2 terminus of α-rENaC contains two key motifs. One motif regulates the endocytic retrieval of the channel from the plasma membrane. The second motif is required for channel activity.


Cellular Physiology and Biochemistry | 2008

The Role of SGK and CFTR in Acute Adaptation to Seawater in Fundulus Heteroclitus

Joseph R. Shaw; J. Denry Sato; John VanderHeide; Taylor LaCasse; Caitlin R. Stanton; Alexander Lankowski; Sara Stanton; Chris Chapline; Bonita Coutermarsh; Roxanna Barnaby; Katherine H. Karlson; Bruce A. Stanton

Killifish are euryhaline teleosts that adapt to increased salinity by up regulating CFTR mediated Cl- secretion in the gill and opercular membrane. Although many studies have examined the mechanisms responsible for long term (days) adaptation to increased salinity, little is known about the mechanisms responsible for acute (hours) adaptation. Thus, studies were conducted to test the hypotheses that the acute homeostatic regulation of NaCl balance in killifish involves a translocation of CFTR to the plasma membrane and that this effect is mediated by serum-and glucocorticoid-inducible kinase (SGK1). Cell surface biotinyation and Ussing chamber studies revealed that freshwater to seawater transfer rapidly (1 hour) increased CFTR Cl- secretion and the abundance of CFTR in the plasma membrane of opercular membranes. Q-RT-PCR and Western blot studies demonstrated that the increase in plasma membrane CFTR was preceded by an increase in SGK1 mRNA and protein levels. Seawater rapidly (1 hr) increases cortisol and plasma tonicity, potent stimuli of SGK1 expression, yet RU486, a glucocorticoid receptor antagonist, did not block the increase in SGK1 expression. Thus, in killifish SGK1 does not appear to be regulated by the glucocorticoid receptor. Since SGK1 has been shown to increase the plasma membrane abundance of CFTR in Xenopus oocytes, these observations suggest that acute adaptation (hours) to increased salinity in killifish involves translocation of CFTR from an intracellular pool to the plasma membrane, and that this effect may be mediated by SGK1.

Collaboration


Dive into the Katherine H. Karlson's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Erik M. Schwiebert

University of Alabama at Birmingham

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

William B. Guggino

Johns Hopkins University School of Medicine

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge