Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Bruce D. Cornuelle is active.

Publication


Featured researches published by Bruce D. Cornuelle.


Journal of Climate | 2005

The Forcing of the Pacific Decadal Oscillation

Niklas Schneider; Bruce D. Cornuelle

The Pacific decadal oscillation (PDO), defined as the leading empirical orthogonal function of North Pacific sea surface temperature anomalies, is a widely used index for decadal variability. It is shown that the PDO can be recovered from a reconstruction of North Pacific sea surface temperature anomalies based on a first-order autoregressive model and forcing by variability of the Aleutian low, El Nino–Southern Oscillation (ENSO), and oceanic zonal advection anomalies in the Kuroshio–Oyashio Extension. The latter results from oceanic Rossby waves that are forced by North Pacific Ekman pumping. The SST response patterns to these processes are not orthogonal, and they determine the spatial characteristics of the PDO. The importance of the different forcing processes is frequency dependent. At interannual time scales, forcing from ENSO and the Aleutian low determines the response in equal parts. At decadal time scales, zonal advection in the Kuroshio–Oyashio Extension, ENSO, and anomalies of the Aleutian low each account for similar amounts of the PDO variance. These results support the hypothesis that the PDO is not a dynamical mode, but arises from the superposition of sea surface temperature fluctuations with different dynamical origins.


Journal of Physical Oceanography | 1995

Barotropic and Baroclinic Tides in the Central North Pacific Ocean Determined from Long-Range Reciprocal Acoustic Transmissions

Brian D. Dushaw; Bruce M. Howe; Bruce D. Cornuelle; Peter F. Worcester; Douglas S. Luther

Abstract Travel times of reciprocal 1000-km range acoustic transmissions, determined from the 1987 Reciprocal Tomography Experiment, are used to study barotropic tidal currents and a large-scale, coherent baroclinic tide in the central North Pacific Ocean. The difference in reciprocal travel times determines the tidal currents, while the sum of reciprocal travel times determines the baroclinic tide displacement of isotachs (or equivalently, isotherms). The barotropic tidal current accounts for 90% of the observed differential travel time variance. The measured harmonic constants of the eight major tidal constituents of the barotropic tide and the constants determined from current meter measurements agree well with the empirical–numerical tidal models of Schwiderski and Cartwright et al. The amplitudes and phases of the first-mode baroclinic tide determined from sum travel times agree with those determined from moored thermistors and current meters. The baroclinic tidal signals are consistent with a large-...


Journal of the Acoustical Society of America | 1999

A test of basin-scale acoustic thermometry using a large-aperture vertical array at 3250-km range in the eastern North Pacific Ocean

Peter F. Worcester; Bruce D. Cornuelle; Matthew A. Dzieciuch; Walter Munk; Bruce M. Howe; James A. Mercer; Robert C. Spindel; John A. Colosi; Kurt Metzger; Theodore G. Birdsall; Arthur B. Baggeroer

Broadband acoustic signals were transmitted during November 1994 from a 75-Hz source suspended near the depth of the sound-channel axis to a 700-m long vertical receiving array approximately 3250 km distant in the eastern North Pacific Ocean. The early part of the arrival pattern consists of raylike wave fronts that are resolvable, identifiable, and stable. The later part of the arrival pattern does not contain identifiable raylike arrivals, due to scattering from internal-wave-induced sound-speed fluctuations. The observed ray travel times differ from ray predictions based on the sound-speed field constructed using nearly concurrent temperature and salinity measurements by more than a priori variability estimates, suggesting that the equation used to compute sound speed requires refinement. The range-averaged ocean sound speed can be determined with an uncertainty of about 0.05 m/s from the observed ray travel times together with the time at which the near-axial acoustic reception ends, used as a surroga...


Journal of Physical Oceanography | 2007

Interannual to Decadal Changes in the ECCO Global Synthesis

Armin Köhl; Detlef Stammer; Bruce D. Cornuelle

Abstract An estimate of the time-varying global ocean circulation for the period 1992–2002 was obtained by combining most of the World Ocean Circulation Experiment (WOCE) ocean datasets with a general circulation model on a 1° horizontal grid. The estimate exactly satisfies the model equations without artificial sources or sinks of momentum, heat, and freshwater. To bring the model into agreement with observations, its initial temperature and salinity conditions were permitted to change, as were the time-dependent surface fluxes of momentum, heat, and freshwater. The estimation of these “control variables” is largely consistent with accepted uncertainties in the hydrographic climatology and meteorological analyses. The estimated time-mean horizontal transports of volume, heat, and freshwater, which were largely underestimated in the previous 2° optimization performed by Stammer et al., have converged with time-independent estimates from box inversions over most parts of the World Ocean. Trends in the mode...


Journal of the Acoustical Society of America | 1992

On equations for the speed of sound in seawater.

Brian D. Dushaw; Peter F. Worcester; Bruce D. Cornuelle; Bruce M. Howe

Long‐range acoustic transmissions made in conjunction with extensive environmental measurements and accurate mooring position determinations have been used to test the accuracy of equations used to calculate sound speed from pressure, temperature, and salinity. The sound‐speed field computed using the Del Grosso equation [V. A. Del Grosso, J. Acoust. Soc. Am. 56, 1084–1091 (1974)] give predictions of acoustic arrival patterns which agree significantly better with the long‐range measurements than those computed using the Chen and Millero equation [C. Chen and F. J. Millero, J. Acoust. Soc. Am. 62, 1129–1135 (1977)]. The predicted ray travel times and travel time error have been calculated using objectively mapped sound‐speed fields computed from CTD and XBT data. Using the measured and predicted ray travel times, a negligible correction to Del Grosso’s equation of 0.05±0.05 m/s at 4000‐m depth is calculated. Small errors of about 50 m in the GPS determination of mooring positions lends a depth‐independent ...


Journal of Geophysical Research | 1998

Relationship of TOPEX/Poseidon altimetric height to steric height and circulation in the North Pacific

John Gilson; Dean Roemmich; Bruce D. Cornuelle; Lee-Lueng Fu

TOPEX/Poseidon altimetric height is compared with 20 transpacific eddy-resolving realizations of steric height. The latter are calculated from temperature (expendable bathythermograph (XBT)) and salinity (expendable conductivity and temperature profiler (XCTD)) profiles along a precisely repeating ship track over a period of 5 years. The overall difference between steric height and altimetric height is 5.2 cm RMS. On long wavelengths (λ 500 km), containing 17% of the steric height variance, the 3.0 cm RMS difference and lowered coherence are due to the sparse distribution of altimeter ground tracks along the XBT section. The 2.4 cm RMS difference in the basin-wide spatial mean appears to be due to fluctuations in bottom pressure. Differences between steric height and altimetric height increase near the western boundary, but data variance increases even more, and so the signal-to-noise ratio is highest in the western quarter of the transect. Basin-wide integrals of surface geostrophic transport from steric height and altimetric height are in reasonable agreement. The 1.9×104 m2 s−1 RMS difference is mainly because the interpolated altimetric height lacks spatial resolution across the narrow western boundary current. A linear regression is used to demonstrate the estimation of subsurface temperature from altimetric data. Errors diminish from 0.8°C at 200 m to 0.3°C at 400 m. Geostrophic volume transport, 0–800 m, shows agreement that is similar to surface transport, with 4.8 Sverdrup (Sv) (106 m3 s−1) RMS difference. The combination of altimetric height with subsurface temperature and salinity profiling is a powerful tool for observing variability in circulation and transport of the upper ocean. The continuing need for appropriate subsurface data for verification and for statistical estimation is emphasized. This includes salinity measurements, which significantly reduce errors in specific volume and steric height.


Journal of the Acoustical Society of America | 1999

Comparisons of measured and predicted acoustic fluctuations for a 3250-km propagation experiment in the eastern North Pacific Ocean

John A. Colosi; Edward K. Scheer; Stanley M. Flatté; Bruce D. Cornuelle; Matthew A. Dzieciuch; Walter Munk; Peter F. Worcester; Bruce M. Howe; James A. Mercer; Robert C. Spindel; Kurt Metzger; Theodore G. Birdsall; Arthur B. Baggeroer

During the Acoustic Engineering Test (AET) of the Acoustic Thermometry of Ocean Climate (ATOC) program, acoustic signals were transmitted from a broadband source with 75-Hz center frequency to a 700-m-long vertical array of 20 hydrophones at a distance of 3252 km; receptions occurred over a period of six days. Each received pulse showed early identifiable timefronts, followed by about 2 s of highly variable energy. For the identifiable timefronts, observations of travel-time variance, average pulse shape, and the probability density function (PDF) of intensity are presented, and calculations of internal-wave contributions to those fluctuations are compared to the observations. Individual timefronts have rms travel time fluctuations of 11 to 19 ms, with time scales of less than 2 h. The pulse time spreads are between 0 and 5.3 ms rms, which suggest that internal-wave-induced travel-time biases are of the same magnitude. The PDFs of intensity for individual ray arrivals are compared to log-normal and expone...


Journal of Physical Oceanography | 1992

The Subtropical Mode Waters of the South Pacific Ocean

Dean Roemmich; Bruce D. Cornuelle

Abstract The subtropical mode waters (STMW) of the southwestern Pacific Ocean are described, including their physical characteristics, spatial distribution, and temporal variability. STMW is a thermostad, or minimum in stratification, having temperatures of about 15°–19°C and vertical temperature gradient less than about 2°C per 100 m. Typical salinity is 35.5 psu at 16.5°C. The STMW layer is formed by deep mixing and cooling in the eastward-flowing waters of the separated East Australia Current. Surface mixed layers are observed as deep as 300 m north of New Zealand in winter, in the center of a recurring anticyclonic eddy. The STMW thermostad in the South Pacific is considerably weaker than its counterparts in the North Atlantic and North Pacific, a contrast that may help to discriminate between physical processes contributing to its formation. A quarterly time series of expendable bathythermograph transects between New Zealand and Fiji is used to study the temporal variability of STMW. Large fluctuatio...


Journal of Physical Oceanography | 1985

Tomographic Maps of the Ocean Mesoscale. Part 1: Pure Acoustics

Bruce D. Cornuelle; Carl Wunsch; D. Behringer; Theodore G. Birdsall; Michael G. Brown; R. Heinmiller; Robert A. Knox; Kurt Metzger; Walter Munk; John L. Spiesberger; R. Spindel; D. Webb; Peter F. Worcester

Abstract A field test of ocean acoustic tomography was conducted in 1981 for a two month period in a 300 km square at 26°N, 70°W in the North Atlantic (just south of the MODE region). Nine acoustic deep-sea moorings with sea floor transponders for automated position keeping and with provisions for precise time keeping were set and recovered. From the measured travel times between moorings, various displays of the three-dimensional field of sound speed (closely related to temperature) have been obtained by inversion procedures. These procedures use historical ocean data as a reference, but all information from the in situ surveys has been withheld; the “pure” tomographic results were then compared to direct in situ observations. The tomographically derived spatial mean profile compares favorably to an equivalent profile from the in situ observations; both differ significantly from the historical average. Maps constructed at three day intervals for a two month period show a pattern of eddy structure in agre...


Journal of Geophysical Research | 1994

Seismic structure and anisotropy of the Juan de Fuca Ridge at 45°N

Mark A. McDonald; Spahr C. Webb; John A. Hildebrand; Bruce D. Cornuelle; Christopher G. Fox

A seismic refraction experiment was conducted with air guns and ocean bottom seismometers on the Juan de Fuca Ridge at 45°N, at the northern Cleft segment and at the overlapping rift zone between the Cleft and Vance segments. These data determine the average velocity structure of the upper crust and map the thickness variability of the shallow low-velocity layer, which we interpret as the extrusive volcanic layer. The experiment is unique because a large number of travel times were measured along ray paths oriented at all azimuths within a small (20 km by 35 km) area. These travel times provide evidence for compressional velocity anisotropy in the upper several hundred meters of oceanic crust, presumed to be caused by ridge-parallel fracturing. Compressional velocities are 3.35 km/s in the ridge strike direction and 2.25 km/s across strike. Travel time residuals are simultaneously inverted for anisotropy as well as lateral thickness variations in the low-velocity layer. Extrusive layer thickness ranges from approximately 200 m to 550 m with an average of 350 m. The zone of the thinnest low-velocity layer is within the northern Cleft segment axial valley, in a region of significant hydrothermal activity. Layer thickness variability is greatest near the Cleft-Vance overlapping rift zone, where changes of 300 m occur over as little as several kilometers laterally. These low-velocity layer thickness changes may correspond to fault block rotations in an episodic spreading system, where the low side of each fault block accumulates more extrusive volcanics.

Collaboration


Dive into the Bruce D. Cornuelle's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Bruce M. Howe

University of Hawaii at Manoa

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Walter Munk

University of California

View shared research outputs
Top Co-Authors

Avatar

W. A. Kuperman

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

John A. Colosi

Woods Hole Oceanographic Institution

View shared research outputs
Researchain Logo
Decentralizing Knowledge