Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Bruce M. Howe is active.

Publication


Featured researches published by Bruce M. Howe.


Radio Science | 2004

Global Assimilation of Ionospheric Measurements (GAIM)

Robert W. Schunk; Ludger Scherliess; Jan J. Sojka; D. C. Thompson; David N. Anderson; Mihail Codrescu; C. F. Minter; T. J. Fuller-Rowell; R. A. Heelis; Marc R. Hairston; Bruce M. Howe

Abstract : Our primary goal is to construct a real-time data assimilation model for the ionosphere-plasmasphere system that will provide reliable specifications and forecasts. A secondary goal is to validate the model for a wide range of geophysical conditions, including different solar cycle, seasonal, storm, and substorm conditions.


Acoustics Research Letters Online-arlo | 2002

Ocean ambient sound: Comparing the 1960s with the 1990s for a receiver off the California coast

Rex K. Andrew; Bruce M. Howe; James A. Mercer; Matthew A. Dzieciuch

Ocean ambient sound data from 1994 to 2001 have been collected using a receiver on the continental slope off Point Sur, California. A temporary, nearby receiving array was used for calibration purposes. The resulting data set is compared with long-term averages of earlier measurements made with the identical receiver over the period from 1963 to 1965. This comparison shows that the 1994 to 2001 levels exceed the 1963 to 1965 levels by about 10 dB between 20 and 80 Hz and between 200 and 300 Hz, and about 3 dB at 100 Hz. Increases in (distant) shipping sound levels may account for this.


Journal of Physical Oceanography | 1995

Barotropic and Baroclinic Tides in the Central North Pacific Ocean Determined from Long-Range Reciprocal Acoustic Transmissions

Brian D. Dushaw; Bruce M. Howe; Bruce D. Cornuelle; Peter F. Worcester; Douglas S. Luther

Abstract Travel times of reciprocal 1000-km range acoustic transmissions, determined from the 1987 Reciprocal Tomography Experiment, are used to study barotropic tidal currents and a large-scale, coherent baroclinic tide in the central North Pacific Ocean. The difference in reciprocal travel times determines the tidal currents, while the sum of reciprocal travel times determines the baroclinic tide displacement of isotachs (or equivalently, isotherms). The barotropic tidal current accounts for 90% of the observed differential travel time variance. The measured harmonic constants of the eight major tidal constituents of the barotropic tide and the constants determined from current meter measurements agree well with the empirical–numerical tidal models of Schwiderski and Cartwright et al. The amplitudes and phases of the first-mode baroclinic tide determined from sum travel times agree with those determined from moored thermistors and current meters. The baroclinic tidal signals are consistent with a large-...


Radio Science | 1992

Application of stochastic inverse theory to ionospheric tomography

Edward J. Fremouw; James A. Secan; Bruce M. Howe

Tomographic processing of path integral electron density records is emerging as a viable tool for ionospheric research. Tomographic processors fall into at least two major classes: those applying the Radon transform and those employing linear algebraic matrix inversion. In this paper we apply one of the latter, the “weighted, damped, least squares” technique of stochastic inversion, to two simulated but realistic data sets. This method, which repeatedly has been applied successfully to ocean acoustic tomography, is particularly suited to solving inverse problems in geophysics because it provides an orderly mechanism for judicious use of a priori or external information to complement sparse or nonuniform path integral data. The limited range of angles through which the ionosphere may be viewed on satellite-to-ground paths represents such a nonuniformity in ionospheric tomography. The method also provides means for estimating uncertainty in the image field, uncertainty which itself is nonuniform.


Journal of the Acoustical Society of America | 1999

A test of basin-scale acoustic thermometry using a large-aperture vertical array at 3250-km range in the eastern North Pacific Ocean

Peter F. Worcester; Bruce D. Cornuelle; Matthew A. Dzieciuch; Walter Munk; Bruce M. Howe; James A. Mercer; Robert C. Spindel; John A. Colosi; Kurt Metzger; Theodore G. Birdsall; Arthur B. Baggeroer

Broadband acoustic signals were transmitted during November 1994 from a 75-Hz source suspended near the depth of the sound-channel axis to a 700-m long vertical receiving array approximately 3250 km distant in the eastern North Pacific Ocean. The early part of the arrival pattern consists of raylike wave fronts that are resolvable, identifiable, and stable. The later part of the arrival pattern does not contain identifiable raylike arrivals, due to scattering from internal-wave-induced sound-speed fluctuations. The observed ray travel times differ from ray predictions based on the sound-speed field constructed using nearly concurrent temperature and salinity measurements by more than a priori variability estimates, suggesting that the equation used to compute sound speed requires refinement. The range-averaged ocean sound speed can be determined with an uncertainty of about 0.05 m/s from the observed ray travel times together with the time at which the near-axial acoustic reception ends, used as a surroga...


Radio Science | 1998

Tomography of the ionosphere: Four‐dimensional simulations

Bruce M. Howe; Kay Runciman; James A. Secan

Using a four-dimensional stochastic model of ionosphere perturbations, simulations are made of a tomography system based on data from the Global Positioning System and a low Earth-orbiting satellite. The perturbations are departures from a simple time-independent reference state. The spatial structure is parameterized in terms of empirical orthogonal functions (EOFs) in the vertical and spherical harmonics in the horizontal. The horizontal covariance structure is specified by variance and correlation length scales as functions of latitude and longitude. Time dependence is modeled as a first-order Markov process with a 6-hour timescale and white-noise forcing. A Sun-fixed coordinate system is used so that ionospheric features are more nearly steady in time. A Kaiman filter is used to objectively assimilate the simulated data into the simple time-dependent model. In addition to solving for the three-dimensional electron density field at each time step, the procedure solves for instrumental biases. The simulations show that the fractions of resolved variance for vertical EOF modes 1, 2, and 3 are 0.99, 0.93, and 0.73, respectively. The resolution of the vertically integrated total electron content is 0.99.


Journal of the Acoustical Society of America | 1992

On equations for the speed of sound in seawater.

Brian D. Dushaw; Peter F. Worcester; Bruce D. Cornuelle; Bruce M. Howe

Long‐range acoustic transmissions made in conjunction with extensive environmental measurements and accurate mooring position determinations have been used to test the accuracy of equations used to calculate sound speed from pressure, temperature, and salinity. The sound‐speed field computed using the Del Grosso equation [V. A. Del Grosso, J. Acoust. Soc. Am. 56, 1084–1091 (1974)] give predictions of acoustic arrival patterns which agree significantly better with the long‐range measurements than those computed using the Chen and Millero equation [C. Chen and F. J. Millero, J. Acoust. Soc. Am. 62, 1129–1135 (1977)]. The predicted ray travel times and travel time error have been calculated using objectively mapped sound‐speed fields computed from CTD and XBT data. Using the measured and predicted ray travel times, a negligible correction to Del Grosso’s equation of 0.05±0.05 m/s at 4000‐m depth is calculated. Small errors of about 50 m in the GPS determination of mooring positions lends a depth‐independent ...


Journal of the Acoustical Society of America | 1999

Comparisons of measured and predicted acoustic fluctuations for a 3250-km propagation experiment in the eastern North Pacific Ocean

John A. Colosi; Edward K. Scheer; Stanley M. Flatté; Bruce D. Cornuelle; Matthew A. Dzieciuch; Walter Munk; Peter F. Worcester; Bruce M. Howe; James A. Mercer; Robert C. Spindel; Kurt Metzger; Theodore G. Birdsall; Arthur B. Baggeroer

During the Acoustic Engineering Test (AET) of the Acoustic Thermometry of Ocean Climate (ATOC) program, acoustic signals were transmitted from a broadband source with 75-Hz center frequency to a 700-m-long vertical array of 20 hydrophones at a distance of 3252 km; receptions occurred over a period of six days. Each received pulse showed early identifiable timefronts, followed by about 2 s of highly variable energy. For the identifiable timefronts, observations of travel-time variance, average pulse shape, and the probability density function (PDF) of intensity are presented, and calculations of internal-wave contributions to those fluctuations are compared to the observations. Individual timefronts have rms travel time fluctuations of 11 to 19 ms, with time scales of less than 2 h. The pulse time spreads are between 0 and 5.3 ms rms, which suggest that internal-wave-induced travel-time biases are of the same magnitude. The PDFs of intensity for individual ray arrivals are compared to log-normal and expone...


IEEE Journal of Oceanic Engineering | 1999

Multimegameter-range acoustic data obtained by bottom-mounted hydrophone arrays for measurement of ocean temperature

Brian D. Dushaw; Bruce M. Howe; James A. Mercer; Robert C. Spindel; Arthur B. Baggeroer; Dimitris Menemenlis; Carl Wunsch; Theodore G. Birdsall; Kurt Metzger; C. Clark; John A. Colosi; B.D. Comuelle; M. A. Dzieciuch; Walter Munk; Peter F. Worcester; Daniel P. Costa; Andrew M. G. Forbes

Acoustic signals transmitted from the ATOC source on Pioneer Seamount off the coast of California have been received at various sites around the Pacific Basin since January 1996. We describe data obtained using bottom-mounted receivers, including US Navy Sound Surveillance System arrays, at ranges up to 5 Mm from the Pioneer Seamount source. Stable identifiable ray arrivals are observed in several cases, but some receiving arrays are not well suited to detecting the direct ray arrivals. At 5-Mm range, travel-time variations at tidal frequencies (about 50 ms peak to peak) agree well with predicted values, providing verification of the acoustic measurements as well as the tidal model. On the longest and northernmost acoustic paths, the time series of resolved ray travel times show an annual cycle peak-to-peak variation of about 1 s and other fluctuations caused by natural oceanic variability. An annual cycle is not evident in travel times from shorter acoustic paths in the eastern Pacific, though only one realization of the annual cycle is available. The low-pass-filtered travel times are estimated to an accuracy of about 10 ms. This travel-time uncertainty corresponds to errors in range- and depth-averaged temperature of only a few millidegrees, while the annual peak-to-peak variation in temperature averaged horizontally over the acoustic path and vertically over the upper 1 km of ocean is up to 0.5/spl deg/C.


Journal of the Acoustical Society of America | 1992

Measured wave‐front fluctuations in 1000‐km pulse propagation in the Pacific Ocean

Timothy F. Duda; Stanley M. Flatté; John A. Colosi; Bruce D. Cornuelle; John A. Hildebrand; William S. Hodgkiss; Peter F. Worcester; Bruce M. Howe; James A. Mercer; Robert C. Spindel

A 1000‐km acoustical transmission experiment has been carried out in the North Pacific, with pulses broadcast between a moored broadband source (250‐Hz center frequency) and a moored sparse vertical line of receivers. Two data records are reported: a period of 9 days at a pulse rate of one per hour, and a 21‐h period on the seventh day at six per hour. Many wave‐front segments were observed at each hydrophone depth, and arrival times were tracked and studied as functions of time and depth. Arrivals within the final section of the pulse are not trackable in time or space at the chosen sampling rates, however. Broadband fluctuations, which are uncorrelated over 10‐min sampling and 60‐m vertical spacing, are observed with about 40 (ms)2 variance. The variance of all other fluctuations (denoted as low‐frequency) is comparable or smaller than the broadband value; this low‐frequency variance can be separated into two parts: a wave‐front segment displacement (with vertical correlation length greater than 1 km) t...

Collaboration


Dive into the Bruce M. Howe's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Rex K. Andrew

University of Washington

View shared research outputs
Top Co-Authors

Avatar

John A. Colosi

Woods Hole Oceanographic Institution

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Walter Munk

University of California

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge