Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Bruce D. Pascal is active.

Publication


Featured researches published by Bruce D. Pascal.


Nature Communications | 2015

Conformational states of the full-length glucagon receptor.

Linlin Yang; Dehua Yang; Chris de Graaf; Arne Moeller; Graham M. West; Venkatasubramanian Dharmarajan; Chong Wang; Fai Y. Siu; Gaojie Song; Steffen Reedtz-Runge; Bruce D. Pascal; Beili Wu; Clinton S. Potter; Hu Zhou; Patrick R. Griffin; Bridget Carragher; Huaiyu Yang; Ming-Wei Wang; Raymond C. Stevens; Hualiang Jiang

Class B G protein-coupled receptors are composed of an extracellular domain (ECD) and a seven-transmembrane (7TM) domain, and their signalling is regulated by peptide hormones. Using a hybrid structural biology approach together with the ECD and 7TM domain crystal structures of the glucagon receptor (GCGR), we examine the relationship between full-length receptor conformation and peptide ligand binding. Molecular dynamics (MD) and disulfide crosslinking studies suggest that apo-GCGR can adopt both an open and closed conformation associated with extensive contacts between the ECD and 7TM domain. The electron microscopy (EM) map of the full-length GCGR shows how a monoclonal antibody stabilizes the ECD and 7TM domain in an elongated conformation. Hydrogen/deuterium exchange (HDX) studies and MD simulations indicate that an open conformation is also stabilized by peptide ligand binding. The combined studies reveal the open/closed states of GCGR and suggest that glucagon binds to GCGR by a conformational selection mechanism.


Nature | 2015

Crystal structure of rhodopsin bound to arrestin by femtosecond X-ray laser

Yanyong Kang; X. Edward Zhou; Xiang Gao; Yuanzheng He; Wei Liu; Andrii Ishchenko; Anton Barty; Thomas A. White; Oleksandr Yefanov; Gye Won Han; Qingping Xu; Parker W. de Waal; Jiyuan Ke; M. H.Eileen Tan; Chenghai Zhang; Arne Moeller; Graham M. West; Bruce D. Pascal; Ned Van Eps; Lydia N. Caro; Sergey A. Vishnivetskiy; Regina J. Lee; Kelly Suino-Powell; Xin Gu; Kuntal Pal; Jinming Ma; Xiaoyong Zhi; Sébastien Boutet; Garth J. Williams; Marc Messerschmidt

G-protein-coupled receptors (GPCRs) signal primarily through G proteins or arrestins. Arrestin binding to GPCRs blocks G protein interaction and redirects signalling to numerous G-protein-independent pathways. Here we report the crystal structure of a constitutively active form of human rhodopsin bound to a pre-activated form of the mouse visual arrestin, determined by serial femtosecond X-ray laser crystallography. Together with extensive biochemical and mutagenesis data, the structure reveals an overall architecture of the rhodopsin–arrestin assembly in which rhodopsin uses distinct structural elements, including transmembrane helix 7 and helix 8, to recruit arrestin. Correspondingly, arrestin adopts the pre-activated conformation, with a ∼20° rotation between the amino and carboxy domains, which opens up a cleft in arrestin to accommodate a short helix formed by the second intracellular loop of rhodopsin. This structure provides a basis for understanding GPCR-mediated arrestin-biased signalling and demonstrates the power of X-ray lasers for advancing the frontiers of structural biology.


Journal of the American Society for Mass Spectrometry | 2012

HDX Workbench: Software for the Analysis of H/D Exchange MS Data

Bruce D. Pascal; Scooter Willis; Janelle L. Lauer; Rachelle R. Landgraf; Graham M. West; David Marciano; Scott Novick; Devrishi Goswami; Michael J. Chalmers; Patrick R. Griffin

Hydrogen/deuterium exchange mass spectrometry (HDX-MS) is an established method for the interrogation of protein conformation and dynamics. While the data analysis challenge of HDX-MS has been addressed by a number of software packages, new computational tools are needed to keep pace with the improved methods and throughput of this technique. To address these needs, we report an integrated desktop program titled HDX Workbench, which facilitates automation, management, visualization, and statistical cross-comparison of large HDX data sets. Using the software, validated data analysis can be achieved at the rate of generation. The application is available at the project home page http://hdx.florida.scripps.edu.


Nature Structural & Molecular Biology | 2011

DNA binding alters coactivator interaction surfaces of the intact VDR-RXR complex.

Jun Zhang; Michael J. Chalmers; Keith R. Stayrook; Lorri L Burris; Yongjun Wang; Scott A. Busby; Bruce D. Pascal; Ruben D. Garcia-Ordonez; John B. Bruning; Monica A. Istrate; Douglas J. Kojetin; Jeffrey Alan Dodge; Thomas P. Burris; Patrick R. Griffin

The vitamin D receptor (VDR) functions as an obligate heterodimer in complex with the retinoid X receptor (RXR). These nuclear receptors are multidomain proteins, and it is unclear how various domains interact with one another within the nuclear receptor heterodimer. Here, we show that binding of intact heterodimer to DNA alters the receptor dynamics in regions remote from the DNA-binding domains (DBDs), including the coactivator binding surfaces of both co-receptors, and that the sequence of the DNA response element can determine these dynamics. Furthermore, agonist binding to the heterodimer results in changes in the stability of the VDR DBD, indicating that the ligand itself may play a role in DNA recognition. These data suggest a mechanism by which nuclear receptors show promoter specificity and have differential effects on various target genes, providing insight into the function of selective nuclear receptor modulators.


Expert Review of Proteomics | 2011

Differential hydrogen/deuterium exchange mass spectrometry analysis of protein–ligand interactions

Michael J. Chalmers; Scott A. Busby; Bruce D. Pascal; Graham M. West; Patrick R. Griffin

Functional regulation of ligand-activated receptors is driven by alterations in the conformational dynamics of the protein upon ligand binding. Differential hydrogen/deuterium exchange (HDX) coupled with mass spectrometry has emerged as a rapid and sensitive approach for characterization of perturbations in conformational dynamics of proteins following ligand binding. While this technique is sensitive to detecting ligand interactions and alterations in receptor dynamics, it also can provide important mechanistic insights into ligand regulation. For example, HDX has been used to determine a novel mechanism of ligand activation of the nuclear receptor peroxisome proliferator activated receptor-γ, perform detailed analyses of binding modes of ligands within the ligand-binding pocket of two estrogen receptor isoforms, providing insight into selectivity, and helped classify different types of estrogen receptor-α ligands by correlating their pharmacology with the way they interact with the receptor based solely on hierarchical clustering of receptor HDX signatures. Beyond small-molecule–receptor interactions, this technique has also been applied to study protein–protein complexes, such as mapping antibody–antigen interactions. In this article, we summarize the current state of the differential HDX approaches and the future outlook. We summarize how HDX analysis of protein–ligand interactions has had an impact on biology and drug discovery.


Analytical Chemistry | 2010

Dynamics of the β2-Adrenergic G-Protein Coupled Receptor Revealed by Hydrogen−Deuterium Exchange

Xi Zhang; Ellen Y.T. Chien; Michael J. Chalmers; Bruce D. Pascal; Jovylyn Gatchalian; Raymond C. Stevens; Patrick R. Griffin

To examine the molecular details of ligand activation of G-protein coupled receptors (GPCRs), emphasis has been placed on structure determination of these receptors with stabilizing ligands. Here we present the methodology for receptor dynamics characterization of the GPCR human beta(2) adrenergic receptor bound to the inverse agonist carazolol using the technique of amide hydrogen/deuterium exchange coupled with mass spectrometry (HDX MS). The HDX MS profile of receptor bound to carazolol is consistent with thermal parameter observations in the crystal structure and provides additional information in highly dynamic regions of the receptor and chemical modifications demonstrating the highly complementary nature of the techniques. After optimization of HDX experimental conditions for this membrane protein, better than 89% sequence coverage was obtained for the receptor. The methodology presented paves the way for future analysis of beta(2)AR bound to pharmacologically distinct ligands as well as analysis of other GPCR family members.


Journal of the American Society for Mass Spectrometry | 2009

HD desktop: An integrated platform for the analysis and visualization of H/D exchange data

Bruce D. Pascal; Michael J. Chalmers; Scott A. Busby; Patrick R. Griffin

Here we describe an integrated software platform titled HD Desktop designed specifically to enhance the analysis of hydrogen/deuterium exchange (HDX) mass spectrometry data. HD Desktop integrates tools for data extraction with visualization components within a single web-based application. The interface design enables users to navigate from the peptide view to the sample and experiment levels, tracking all manipulations while updating the aggregate graphs in real time. HD Desktop is integrated with a relational database designed to provide performance enhancements, as well as a robust model for data storage and retrieval. Additional features of the software include retention time determination, which is achieved with the use of theoretical isotope fitting; here, we assume that the best theoretical fit will occur at the correct retention time for any given peptide. Peptide data consolidation for the rendering of data in 2D was realized by automating known and novel approaches. Designed to address broad needs of the HDX community, the platform presented here provides an efficient and manageable workflow for HDX data analysis and is freely available as a web tool at the project home page http://hdx.florida.scripps.edu.


Structure | 2010

Hydrogen/deuterium exchange reveals distinct agonist/partial agonist receptor dynamics within vitamin D receptor/retinoid X receptor heterodimer.

Jun Zhang; Michael J. Chalmers; Keith R. Stayrook; Lorri L Burris; Ruben D. Garcia-Ordonez; Bruce D. Pascal; Thomas P. Burris; Jeffery A. Dodge; Patrick R. Griffin

Regulation of nuclear receptor (NR) activity is driven by alterations in the conformational dynamics of the receptor upon ligand binding. Previously, we demonstrated that hydrogen/deuterium exchange (HDX) can be applied to determine novel mechanism of action of PPARγ ligands and in predicting tissue specificity of selective estrogen receptor modulators. Here, we applied HDX to probe the conformational dynamics of the ligand binding domain (LBD) of the vitamin D receptor (VDR) upon binding its natural ligand 1α,25-dihydroxyvitamin D3 (1,25D3), and two analogs, alfacalcidol and ED-71. Comparison of HDX profiles from ligands in complex with the LBD with full-length receptor bound to its cognate receptor retinoid X receptor (RXR) revealed unique receptor dynamics that could not be inferred from static crystal structures. These results demonstrate that ligands modulate the dynamics of the heterodimer interface as well as provide insight into the role of AF-2 dynamics in the action of VDR partial agonists.


Structure | 2014

Nitric Oxide-Induced Conformational Changes in Soluble Guanylate Cyclase

Eric S. Underbakke; Anthony T. Iavarone; Michael J. Chalmers; Bruce D. Pascal; Scott Novick; Patrick R. Griffin; Michael A. Marletta

Soluble guanylate cyclase (sGC) is the primary mediator of nitric oxide (NO) signaling. NO binds the sGC heme cofactor stimulating synthesis of the second messenger cyclic-GMP (cGMP). As the central hub of NO/cGMP signaling pathways, sGC is important in diverse physiological processes such as vasodilation and neurotransmission. Nevertheless, the mechanisms underlying NO-induced cyclase activation in sGC remain unclear. Here, hydrogen/deuterium exchange mass spectrometry (HDX-MS) was employed to probe the NO-induced conformational changes of sGC. HDX-MS revealed NO-induced effects in several discrete regions. NO binding to the heme-NO/O2-binding (H-NOX) domain perturbs a signaling surface implicated in Per/Arnt/Sim (PAS) domain interactions. Furthermore, NO elicits striking conformational changes in the junction between the PAS and helical domains that propagate as perturbations throughout the adjoining helices. Ultimately, NO binding stimulates the catalytic domain by contracting the active site pocket. Together, these conformational changes delineate an allosteric pathway linking NO binding to activation of the catalytic domain.


Cell Metabolism | 2014

The Therapeutic Potential of Nuclear Receptor Modulators for Treatment of Metabolic Disorders: PPARγ, RORs, and Rev-erbs

David Marciano; Mi Ra Chang; Cesar A. Corzo; Devrishi Goswami; Vinh Q. Lam; Bruce D. Pascal; Patrick R. Griffin

Nuclear receptors (NRs) play central roles in metabolic syndrome, making them attractive drug targets despite the challenge of achieving functional selectivity. For instance, members of the thiazolidinedione class of insulin sensitizers offer robust efficacy but have been limited due to adverse effects linked to activation of genes not involved in insulin sensitization. Studies reviewed here provide strategies for targeting subsets of PPARγ target genes, enabling development of next-generation modulators with improved therapeutic index. Additionally, emerging evidence suggests that targeting the NRs ROR and Rev-erb holds promise for treating metabolic syndrome based on their involvement in circadian rhythm and metabolism.

Collaboration


Dive into the Bruce D. Pascal's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Devrishi Goswami

Scripps Research Institute

View shared research outputs
Top Co-Authors

Avatar

Graham M. West

Scripps Research Institute

View shared research outputs
Top Co-Authors

Avatar

Scott A. Busby

Scripps Research Institute

View shared research outputs
Top Co-Authors

Avatar

Scott Novick

Scripps Research Institute

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

David Marciano

Scripps Research Institute

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge