Scott A. Busby
Scripps Research Institute
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Scott A. Busby.
Nature | 2011
Jang Hyun Choi; Alexander S. Banks; Theodore M. Kamenecka; Scott A. Busby; Michael J. Chalmers; Naresh Kumar; Dana S. Kuruvilla; Youseung Shin; Yuanjun He; John B. Bruning; David Marciano; Michael D. Cameron; Dina Laznik; Michael J. Jurczak; Stephan C. Schürer; Dušica Vidovic; Gerald I. Shulman; Bruce M. Spiegelman; Patrick R. Griffin
PPARγ is the functioning receptor for the thiazolidinedione (TZD) class of antidiabetes drugs including rosiglitazone and pioglitazone. These drugs are full classical agonists for this nuclear receptor, but recent data have shown that many PPARγ-based drugs have a separate biochemical activity, blocking the obesity-linked phosphorylation of PPARγ by Cdk5 (ref. 2). Here we describe novel synthetic compounds that have a unique mode of binding to PPARγ, completely lack classical transcriptional agonism and block the Cdk5-mediated phosphorylation in cultured adipocytes and in insulin-resistant mice. Moreover, one such compound, SR1664, has potent antidiabetic activity while not causing the fluid retention and weight gain that are serious side effects of many of the PPARγ drugs. Unlike TZDs, SR1664 also does not interfere with bone formation in culture. These data illustrate that new classes of antidiabetes drugs can be developed by specifically targeting the Cdk5-mediated phosphorylation of PPARγ.
Nature Genetics | 2006
Steve Dorus; Scott A. Busby; Ursula Gerike; Jeffrey Shabanowitz; Donald F. Hunt; Timothy L. Karr
In addition to delivering a haploid genome to the egg, sperm have additional critical functions, including egg activation, origination of the zygote centrosome and delivery of paternal factors. Despite this, existing knowledge of the molecular basis of sperm form and function is limited. We used whole-sperm mass spectrometry to identify 381 proteins of the Drosophila melanogaster sperm proteome (DmSP). This approach identified mitochondrial, metabolic and cytoskeletal proteins, in addition to several new functional categories. We also observed nonrandom genomic clustering of sperm genes and underrepresentation on the X chromosome. Identification of widespread functional constraint on the proteome indicates that sexual selection has had a limited role in the overall evolution of D. melanogaster sperm. The relevance of the DmSP to the study of mammalian sperm function and fertilization mechanisms is demonstrated by the identification of substantial homology between the DmSP and proteins of the mouse axoneme accessory structure.
Molecular Pharmacology | 2010
Naresh Kumar; Laura A. Solt; Juliana J. Conkright; Yongjun Wang; Monica A. Istrate; Scott A. Busby; Ruben D. Garcia-Ordonez; Thomas P. Burris; Patrick R. Griffin
Retinoic acid receptor-related orphan receptors (RORs) regulate a variety of physiological processes including hepatic gluconeogenesis, lipid metabolism, circadian rhythm, and immune function. Here we present the first high-affinity synthetic ligand for both RORα and RORγ. In a screen against all 48 human nuclear receptors, the benzenesulfonamide liver X receptor (LXR) agonist N-(2,2,2-trifluoroethyl)-N-[4-[2,2,2-trifluoro-1-hydroxy-1-(trifluoromethyl)ethyl]phenyl]-benzenesulfonamide (T0901317) inhibited transactivation activity of RORα and RORγ but not RORβ. T0901317 was found to directly bind to RORα and RORγ with high affinity (Ki = 132 and 51 nM, respectively), resulting in the modulation of the receptors ability to interact with transcriptional cofactor proteins. T0901317 repressed RORα/γ-dependent transactivation of ROR-responsive reporter genes and in HepG2 cells reduced recruitment of steroid receptor coactivator-2 by RORα at an endogenous ROR target gene (G6Pase). Using small interference RNA, we demonstrate that repression of the gluconeogenic enzyme glucose-6-phosphatase in HepG2 cells by T0901317 is ROR-dependent and is not due to the compounds LXR activity. In summary, T0901317 represents a novel chemical probe to examine RORα/γ function and an excellent starting point for the development of ROR selective modulators. More importantly, our results demonstrate that small molecules can be used to target the RORs for therapeutic intervention in metabolic and immune disorders.
Nature | 2011
Jae Man Lee; Yoon Kwang Lee; Jennifer L. Mamrosh; Scott A. Busby; Patrick R. Griffin; Manish C. Pathak; Eric A. Ortlund; David D. Moore
Nuclear hormone receptors regulate diverse metabolic pathways and the orphan nuclear receptor LRH-1 (also known as NR5A2) regulates bile acid biosynthesis. Structural studies have identified phospholipids as potential LRH-1 ligands, but their functional relevance is unclear. Here we show that an unusual phosphatidylcholine species with two saturated 12 carbon fatty acid acyl side chains (dilauroyl phosphatidylcholine (DLPC)) is an LRH-1 agonist ligand in vitro. DLPC treatment induces bile acid biosynthetic enzymes in mouse liver, increases bile acid levels, and lowers hepatic triglycerides and serum glucose. DLPC treatment also decreases hepatic steatosis and improves glucose homeostasis in two mouse models of insulin resistance. Both the antidiabetic and lipotropic effects are lost in liver-specific Lrh-1 knockouts. These findings identify an LRH-1 dependent phosphatidylcholine signalling pathway that regulates bile acid metabolism and glucose homeostasis.Nuclear hormone receptors regulate diverse metabolic pathways and the orphan nuclear receptor LRH-1 (NR5A2) regulates bile acid biosynthesis1,2. Structural studies have identified phospholipids as potential LRH-1 ligands3–5, but their functional relevance is unclear. Here we show that an unusual phosphatidylcholine species with two saturated 12 carbon fatty acid acyl side chains (dilauroyl phosphatidylcholine, DLPC) is an LRH-1 agonist ligand in vitro. DLPC treatment induces bile acid biosynthetic enzymes in mouse liver, increases bile acid levels, and lowers hepatic triglycerides and serum glucose. DLPC treatment also decreases hepatic steatosis and improves glucose homeostasis in two mouse models of insulin resistance. Both the antidiabetic and lipotropic effects are lost in liver specific Lrh-1 knockouts. These findings identify an LRH-1 dependent phosphatidylcholine signaling pathway that regulates bile acid metabolism and glucose homeostasis.
Nature Structural & Molecular Biology | 2011
Jun Zhang; Michael J. Chalmers; Keith R. Stayrook; Lorri L Burris; Yongjun Wang; Scott A. Busby; Bruce D. Pascal; Ruben D. Garcia-Ordonez; John B. Bruning; Monica A. Istrate; Douglas J. Kojetin; Jeffrey Alan Dodge; Thomas P. Burris; Patrick R. Griffin
The vitamin D receptor (VDR) functions as an obligate heterodimer in complex with the retinoid X receptor (RXR). These nuclear receptors are multidomain proteins, and it is unclear how various domains interact with one another within the nuclear receptor heterodimer. Here, we show that binding of intact heterodimer to DNA alters the receptor dynamics in regions remote from the DNA-binding domains (DBDs), including the coactivator binding surfaces of both co-receptors, and that the sequence of the DNA response element can determine these dynamics. Furthermore, agonist binding to the heterodimer results in changes in the stability of the VDR DBD, indicating that the ligand itself may play a role in DNA recognition. These data suggest a mechanism by which nuclear receptors show promoter specificity and have differential effects on various target genes, providing insight into the function of selective nuclear receptor modulators.
Expert Review of Proteomics | 2011
Michael J. Chalmers; Scott A. Busby; Bruce D. Pascal; Graham M. West; Patrick R. Griffin
Functional regulation of ligand-activated receptors is driven by alterations in the conformational dynamics of the protein upon ligand binding. Differential hydrogen/deuterium exchange (HDX) coupled with mass spectrometry has emerged as a rapid and sensitive approach for characterization of perturbations in conformational dynamics of proteins following ligand binding. While this technique is sensitive to detecting ligand interactions and alterations in receptor dynamics, it also can provide important mechanistic insights into ligand regulation. For example, HDX has been used to determine a novel mechanism of ligand activation of the nuclear receptor peroxisome proliferator activated receptor-γ, perform detailed analyses of binding modes of ligands within the ligand-binding pocket of two estrogen receptor isoforms, providing insight into selectivity, and helped classify different types of estrogen receptor-α ligands by correlating their pharmacology with the way they interact with the receptor based solely on hierarchical clustering of receptor HDX signatures. Beyond small-molecule–receptor interactions, this technique has also been applied to study protein–protein complexes, such as mapping antibody–antigen interactions. In this article, we summarize the current state of the differential HDX approaches and the future outlook. We summarize how HDX analysis of protein–ligand interactions has had an impact on biology and drug discovery.
Journal of the American Society for Mass Spectrometry | 2009
Bruce D. Pascal; Michael J. Chalmers; Scott A. Busby; Patrick R. Griffin
Here we describe an integrated software platform titled HD Desktop designed specifically to enhance the analysis of hydrogen/deuterium exchange (HDX) mass spectrometry data. HD Desktop integrates tools for data extraction with visualization components within a single web-based application. The interface design enables users to navigate from the peptide view to the sample and experiment levels, tracking all manipulations while updating the aggregate graphs in real time. HD Desktop is integrated with a relational database designed to provide performance enhancements, as well as a robust model for data storage and retrieval. Additional features of the software include retention time determination, which is achieved with the use of theoretical isotope fitting; here, we assume that the best theoretical fit will occur at the correct retention time for any given peptide. Peptide data consolidation for the rendering of data in 2D was realized by automating known and novel approaches. Designed to address broad needs of the HDX community, the platform presented here provides an efficient and manageable workflow for HDX data analysis and is freely available as a web tool at the project home page http://hdx.florida.scripps.edu.
Chemistry & Biology | 2012
Thomas P. Burris; Scott A. Busby; Patrick R. Griffin
The nuclear receptor (NR) superfamily is composed of 48 members in humans and includes receptors for steroid hormones, thyroid hormone, various lipids and oxysterols. This superfamily has been a rich source of drug targets for myriad diseases including inflammation, cancer, and metabolic disorders. Approximately half of the superfamily have well characterized natural ligands whereas the remaining receptors are considered orphan receptors and remain a focus of a number of investigators assessing their ability to be regulated by ligands. Here, we review recent discoveries that yield important insight into the druggability of three orphan nuclear receptors: the retinoic acid receptor-like orphan receptors (RORs), peroxisome proliferator-activated receptor γ (PPARγ), and liver receptor homolog-1 (LRH-1).
Molecular and Cellular Biology | 2005
Chun-Song Yang; Michael J. Vitto; Scott A. Busby; Benjamin A. Garcia; Cristina T. Kesler; Daniel Gioeli; Jeffrey Shabanowitz; Donald F. Hunt; Kathleen Rundell; David L. Brautigan; Bryce M. Paschal
ABSTRACT The tumor antigens simian virus 40 small t antigen (ST) and polyomavirus small and medium T antigens mediate cell transformation in part by binding to the structural A subunit of protein phosphatase 2A (PP2A). The replacement of B subunits by tumor antigens inhibits PP2A activity and prolongs phosphorylation-dependent signaling. Here we show that ST mediates PP2A A/C heterodimer transfer onto the ligand-activated androgen receptor (AR). Transfer by ST is strictly dependent on the agonist-activated conformation of AR, occurs within minutes of the addition of androgen to cells, and can occur in either the cytoplasm or the nucleus. The binding of ST changes the conformation of the A subunit, and ST rapidly dissociates from the complex upon PP2A A/C heterodimer binding to AR. PP2A is transferred onto the carboxyl-terminal half of AR, and the phosphatase activity is directed to five phosphoserines in the amino-terminal activation function region 1, with a corresponding reduction in transactivation. Thus, ST functions as a transfer factor to specify PP2A targeting in the cell and modulates the transcriptional activity of AR.
Journal of Biological Chemistry | 2009
Janelle L. Lauer-Fields; Michael J. Chalmers; Scott A. Busby; Dmitriy Minond; Patrick R. Griffin; Gregg B. Fields
Collagen serves as a structural scaffold and a barrier between tissues, and thus collagen catabolism (collagenolysis) is required to be a tightly regulated process in normal physiology. In turn, the destruction or damage of collagen during pathological states plays a role in tumor growth and invasion, cartilage degradation, or atherosclerotic plaque formation and rupture. Several members of the matrix metalloproteinase (MMP) family catalyze the hydrolysis of collagen triple helical structure. This study has utilized triple helical peptide (THP) substrates and inhibitors to dissect MMP-1 collagenolytic behavior. Analysis of MMP-1/THP interactions by hydrogen/deuterium exchange mass spectrometry followed by evaluation of wild type and mutant MMP-1 kinetics led to the identification of three noncatalytic regions in MMP-1 (residues 285–295, 302–316, and 437–457) and two specific residues (Ile-290 and Arg-291) that participate in collagenolysis. Ile-290 and Arg-291 contribute to recognition of triple helical structure and facilitate both the binding and catalysis of the triple helix. Evidence from this study and prior studies indicates that the MMP-1 catalytic and hemopexin-like domains collaborate in collagen catabolism by properly aligning the triple helix and coupling conformational states to facilitate hydrolysis. This study is the first to document the roles of specific residues within the MMP-1 hemopexin-like domain in substrate binding and turnover. Noncatalytic sites, such as those identified here, can ultimately be utilized to create THP inhibitors that target MMPs implicated in disease progression while sparing proteases with host-beneficial functions.