Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Bruce M. Bechle is active.

Publication


Featured researches published by Bruce M. Bechle.


ACS Medicinal Chemistry Letters | 2012

Discovery of Brain-Penetrant, Irreversible Kynurenine Aminotransferase II Inhibitors for Schizophrenia.

Amy B. Dounay; Marie Anderson; Bruce M. Bechle; Brian M. Campbell; Michelle Marie Claffey; Artem G. Evdokimov; Edelweiss Evrard; Kari R. Fonseca; Xinmin Gan; Somraj Ghosh; Matthew Merrill Hayward; Weldon Horner; Ji-Young Kim; Laura A. McAllister; Jayvardhan Pandit; Vanessa Paradis; Vinod D. Parikh; Matthew R. Reese; Suobao Rong; Michelle A. Salafia; Katherine Schuyten; Christine A. Strick; Jamison B. Tuttle; James Valentine; Hong Wang; Laura E. Zawadzke; Patrick Robert Verhoest

Kynurenine aminotransferase (KAT) II has been identified as a potential new target for the treatment of cognitive impairment associated with schizophrenia and other psychiatric disorders. Following a high-throughput screen, cyclic hydroxamic acid PF-04859989 was identified as a potent and selective inhibitor of human and rat KAT II. An X-ray crystal structure and (13)C NMR studies of PF-04859989 bound to KAT II have demonstrated that this compound forms a covalent adduct with the enzyme cofactor, pyridoxal phosphate (PLP), in the active site. In vivo pharmacokinetic and efficacy studies in rat show that PF-04859989 is a brain-penetrant, irreversible inhibitor and is capable of reducing brain kynurenic acid by 50% at a dose of 10 mg/kg (sc). Preliminary structure-activity relationship investigations have been completed and have identified the positions on this scaffold best suited to modification for further optimization of this novel series of KAT II inhibitors.


Bioorganic & Medicinal Chemistry Letters | 2009

Synthesis and SAR of 1,2,3,4-tetrahydroisoquinolin-1-ones as novel G-protein-coupled receptor 40 (GPR40) antagonists.

Paul S. Humphries; John William Benbow; Paul D. Bonin; David Boyer; Shawn D. Doran; Richard K. Frisbie; David W. Piotrowski; Gayatri Balan; Bruce M. Bechle; Edward L. Conn; Kenneth J. DiRico; Robert M. Oliver; Walter C. Soeller; James A. Southers; Xiaojing Yang

The development of a series of novel 1,2,3,4-tetrahydroisoquinolin-1-ones as antagonists of G protein-coupled receptor 40 (GPR40) is described. The synthesis, in vitro inhibitory values for GPR40, in vitro microsomal clearance and rat in vivo clearance data are discussed. Initial hits displayed high rat in vivo clearances that were higher than liver blood flow. Optimization of rat in vivo clearance was achieved and led to the identification of 15i, whose rat oral pharmacokinetic data is reported.


Bioorganic & Medicinal Chemistry Letters | 1995

Selective inhibition of the tyrosine kinase pp60src by analogs of 5,10-dihydropyrimido[4,5-b]quinolin-4(1H)-one

Robert L. Dow; Bruce M. Bechle; Thomas T. Chou; Colin Goddard; Eric R. Larson

Abstract 7,8-Dimethoxy-5,10-dihydropyrimido[4,5-b]quinolin-4(1H)-one ( 1b ) has been discovered to be a potent and selective inhibitor of the tyrosine-specific kinase activity associated with pp60 c-src . Mole of inhibition studies reveal that this agent inhibits in a pure-mixed-noncompetitive mode with respect to nucleotide co-factor.


Journal of Organic Chemistry | 2011

A general strategy for the synthesis of cyclic N-aryl hydroxamic acids via partial nitro group reduction.

Laura A. McAllister; Bruce M. Bechle; Amy B. Dounay; Edelweiss Evrard; Xinmin Gan; Somraj Ghosh; Ji-Young Kim; Vinod D. Parikh; Jamison B. Tuttle; Patrick Robert Verhoest

We describe a generalized approach to stereocontrolled synthesis of substituted cyclic hydroxamic acids (3-amino-1-hydroxy-3,4-dihydroquinolinones) by selective reduction of substituted 2-nitrophenylalanine substrates. Compounds in this series have antibacterial properties and have also recently been reported as KAT II inhibitors. The key nitrophenyl alanine intermediates are prepared enantioselectively in excellent yield by phase transfer catalyzed alkylation of the corresponding nitrobenzyl bromides. The scope and limitations of the reductive cyclization transformation have been explored with attention to the effects of substitution pattern and electronics on reaction efficiency and byproduct formation. In addition, a novel activated trifluoroethyl ester cyclization strategy has been developed as an alternate approach to the most sterically demanding systems in this series.


ACS Medicinal Chemistry Letters | 2013

Structure-Based Design of Irreversible Human KAT II Inhibitors: Discovery of New Potency-Enhancing Interactions

Jamison B. Tuttle; Marie Anderson; Bruce M. Bechle; Brian M. Campbell; Cheng Chang; Amy B. Dounay; Edelweiss Evrard; Kari R. Fonseca; Xinmin Gan; Somraj Ghosh; Weldon Horner; Larry C. James; Ji-Young Kim; Laura A. McAllister; Jayvardhan Pandit; Vinod D. Parikh; Brian Rago; Michelle A. Salafia; Christine A. Strick; Laura E. Zawadzke; Patrick Robert Verhoest

A series of aryl hydroxamates recently have been disclosed as irreversible inhibitors of kynurenine amino transferase II (KAT II), an enzyme that may play a role in schizophrenia and other psychiatric and neurological disorders. The utilization of structure-activity relationships (SAR) in conjunction with X-ray crystallography led to the discovery of hydroxamate 4, a disubstituted analogue that has a significant potency enhancement due to a novel interaction with KAT II. The use of k inact/K i to assess potency was critical for understanding the SAR in this series and for identifying compounds with improved pharmacodynamic profiles.


Chemical Research in Toxicology | 2010

Discovery Tactics To Mitigate Toxicity Risks Due to Reactive Metabolite Formation with 2-(2-Hydroxyaryl)-5-(trifluoromethyl)pyrido[4,3-d]pyrimidin-4(3H)-one Derivatives, Potent Calcium-Sensing Receptor Antagonists and Clinical Candidate(s) for the Treatment of Osteoporosis

Amit S. Kalgutkar; David A. Griffith; Tim Ryder; Hao Sun; Zhuang Miao; Jonathan N. Bauman; Mary Theresa Didiuk; Kosea S. Frederick; Sabrina X. Zhao; Chandra Prakash; John R. Soglia; Scott W. Bagley; Bruce M. Bechle; Ryan M. Kelley; Kenneth J. DiRico; Michael P. Zawistoski; Jianke Li; Robert M. Oliver; Angel Guzman-Perez; Kevin K.-C. Liu; Daniel P. Walker; John William Benbow; Joel Morris

The synthesis and structure-activity relationship studies on 5-trifluoromethylpyrido[4,3-d]pyrimidin-4(3H)-ones as antagonists of the human calcium receptor (CaSR) have been recently disclosed [ Didiuk et al. ( 2009 ) Bioorg. Med. Chem. Lett. 19 , 4555 - 4559 ). On the basis of its pharmacology and disposition attributes, (R)-2-(2-hydroxyphenyl)-3-(1-phenylpropan-2-yl)-5-(trifluoromethyl)pyrido[4,3-d]pyrimidin-4(3H)-one (1) was considered for rapid advancement to first-in-human (FIH) trials to mitigate uncertainty surrounding the pharmacokinetic/pharmacodynamic (PK/PD) predictions for a short-acting bone anabolic agent. During the course of metabolic profiling, however, glutathione (GSH) conjugates of 1 were detected in human liver microsomes in an NADPH-dependent fashion. Characterization of the GSH conjugate structures allowed insight(s) into the bioactivation pathway, which involved CYP3A4-mediated phenol ring oxidation to the catechol, followed by further oxidation to the electrophilic ortho-quinone species. While the reactive metabolite (RM) liability raised concerns around the likelihood of a potential toxicological outcome, a more immediate program goal was establishing confidence in human PK predictions in the FIH study. Furthermore, the availability of a clinical biomarker (serum parathyroid hormone) meant that PD could be assessed side by side with PK, an ideal scenario for a relatively unprecedented pharmacologic target. Consequently, progressing 1 into the clinic was given a high priority, provided the compound demonstrated an adequate safety profile to support FIH studies. Despite forming identical RMs in rat liver microsomes, no clinical or histopathological signs prototypical of target organ toxicity were observed with 1 in in vivo safety assessments in rats. Compound 1 was also devoid of metabolism-based mutagenicity in in vitro (e.g., Salmonella Ames) and in vivo assessments (micronuclei induction in bone marrow) in rats. Likewise, metabolism-based studies (e.g., evaluation of detoxicating routes of clearance and exhaustive PK/PD studies in animals to prospectively predict the likelihood of a low human efficacious dose) were also conducted, which mitigated the risks of idiosyncratic toxicity to a large degree. In parallel, medicinal chemistry efforts were initiated to identify additional compounds with a complementary range of human PK predictions, which would maximize the likelihood of achieving the desired PD effect in the clinic. The back-up strategy also incorporated an overarching goal of reducing/eliminating reactive metabolite formation observed with 1. Herein, the collective findings from our discovery efforts in the CaSR program, which include the incorporation of appropriate derisking steps when dealing with RM issues are summarized.


Bioorganic & Medicinal Chemistry Letters | 2013

PF-04859989 as a template for structure-based drug design: Identification of new pyrazole series of irreversible KAT II inhibitors with improved lipophilic efficiency

Amy B. Dounay; Marie Anderson; Bruce M. Bechle; Edelweiss Evrard; Xinmin Gan; Ji-Young Kim; Laura A. McAllister; Jayvardhan Pandit; Suobao Rong; Michelle A. Salafia; Jamison B. Tuttle; Laura E. Zawadzke; Patrick Robert Verhoest

The structure-based design, synthesis, and biological evaluation of a new pyrazole series of irreversible KAT II inhibitors are described herein. The modification of the inhibitor scaffold of 1 and 2 from a dihydroquinolinone core to a tetrahydropyrazolopyridinone core led to discovery of a new series of potent KAT II inhibitors with excellent physicochemical properties. Compound 20 is the most potent and lipophilically efficient of these new pyrazole analogs, with a k(inact)/K(i) value of 112,000 M(-1)s(-1) and lipophilic efficiency (LipE) of 8.53. The X-ray crystal structure of 20 with KAT II demonstrates key features that contribute to this remarkable potency and binding efficiency.


Bioorganic & Medicinal Chemistry Letters | 2009

Short-acting 5-(trifluoromethyl)pyrido[4,3-d]pyrimidin-4(3H)-one derivatives as orally-active calcium-sensing receptor antagonists.

Mary Theresa Didiuk; David A. Griffith; John William Benbow; Kevin K.-C. Liu; Daniel P. Walker; F. Christopher Bi; Joel Morris; Angel Guzman-Perez; Hua Gao; Bruce M. Bechle; Ryan M. Kelley; Xiaojing Yang; Kenneth J. DiRico; Syed Ahmed; William M. Hungerford; Joseph DiBrinno; Michael P. Zawistoski; Scott W. Bagley; Jianke Li; Yuan Zeng; Stephanie Santucci; Robert M. Oliver; Matthew Corbett; Thanh V. Olson; Chiliu Chen; Mei Li; Vishwas M. Paralkar; Keith Riccardi; David R. Healy; Amit S. Kalgutkar

Synthesis and structure-activity relationship (SAR) studies on 5-trifluoromethylpyrido[4,3-d]pyrimidin-4(3H)-ones, a novel class of calcium receptor antagonists is described with particular emphasis on optimization of the pharmacokinetic/pharmacodynamic parameters required for a short duration of action compound. Orally-active compounds were identified which displayed the desired animal pharmacology (rapid and transient stimulation of parathyroid hormone) essential for bone anabolic effects.


Journal of Medicinal Chemistry | 2017

Discovery of Clinical Candidate 4-[2-(5-Amino-1H-pyrazol-4-yl)-4-chlorophenoxy]-5-chloro-2-fluoro-N-1,3-thiazol-4-ylbenzenesulfonamide (PF-05089771): Design and Optimization of Diaryl Ether Aryl Sulfonamides as Selective Inhibitors of NaV1.7

Nigel Alan Swain; Dave Batchelor; Serge Beaudoin; Bruce M. Bechle; Paul Anthony Bradley; Alan Daniel Brown; Bruce Brown; Kenneth John Butcher; Richard P. Butt; Mark L. Chapman; Stephen Martin Denton; David Ellis; Sebastien Rene Gabriel Galan; Stephen M Gaulier; Ben S. Greener; Marcel J. de Groot; Mel S Glossop; Ian Gurrell; Jo Hannam; Matthew S. Johnson; Zhixin Lin; Christopher John Markworth; Brian Edward Marron; David Simon Millan; Shoko Nakagawa; Andy Pike; David Printzenhoff; David James Rawson; Sarah J Ransley; Steven Reister

A series of acidic diaryl ether heterocyclic sulfonamides that are potent and subtype selective NaV1.7 inhibitors is described. Optimization of early lead matter focused on removal of structural alerts, improving metabolic stability and reducing cytochrome P450 inhibition driven drug-drug interaction concerns to deliver the desired balance of preclinical in vitro properties. Concerns over nonmetabolic routes of clearance, variable clearance in preclinical species, and subsequent low confidence human pharmacokinetic predictions led to the decision to conduct a human microdose study to determine clinical pharmacokinetics. The design strategies and results from preclinical PK and clinical human microdose PK data are described leading to the discovery of the first subtype selective NaV1.7 inhibitor clinical candidate PF-05089771 (34) which binds to a site in the voltage sensing domain.


MedChemComm | 2013

Discovery of hydroxamate bioisosteres as KAT II inhibitors with improved oral bioavailability and pharmacokinetics

Jaclyn Louise Henderson; Aarti Sawant-Basak; Jamison B. Tuttle; Amy B. Dounay; Laura A. McAllister; Jayvardhan Pandit; Suobao Rong; Xinjun Hou; Bruce M. Bechle; Ji-Young Kim; Vinod D. Parikh; Somraj Ghosh; Edelweiss Evrard; Laura E. Zawadzke; Michelle A. Salafia; Brian Rago; Obach Rs; Alan J Clark; Kari R. Fonseca; Cheng Chang; Patrick Robert Verhoest

A series of kynurenine aminotransferase II (KAT II) inhibitors has been developed replacing the hydroxamate motif with a bioisostere. Triazolinones or triazoles have proven to be effective replacements with significantly improved pharmacokinetics including reduced clearance and increased bioavailability. An X-ray crystal structure of an inhibitor bound in KAT II confirms that the irreversible binding to the co-factor is maintained and that the heterocycles make productive hydrogen bonds to the arginine-399.

Collaboration


Dive into the Bruce M. Bechle's collaboration.

Researchain Logo
Decentralizing Knowledge