Laura A. McAllister
Pfizer
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Laura A. McAllister.
Journal of Medicinal Chemistry | 2012
Justin Ian Montgomery; Matthew Frank Brown; Usa Reilly; Loren M. Price; Joseph A. Abramite; Rose Barham; Ye Che; Jinshan Michael Chen; Seung Won Chung; E.M Collantes; Charlene R. Desbonnet; M Doroski; Jonathan L. Doty; J.J Engtrakul; Thomas M. Harris; Michael D. Huband; John D. Knafels; Karen L. Leach; Shenping Liu; Anthony Marfat; Laura A. McAllister; Eric McElroy; Carol A. Menard; Mark J. Mitton-Fry; Lisa Mullins; Mark C. Noe; J O'Donnell; Robert M. Oliver; Joseph Penzien; Mark Stephen Plummer
The synthesis and biological activity of a new series of LpxC inhibitors represented by pyridone methylsulfone hydroxamate 2a is presented. Members of this series have improved solubility and free fraction when compared to compounds in the previously described biphenyl methylsulfone hydroxamate series, and they maintain superior Gram-negative antibacterial activity to comparator agents.
ACS Medicinal Chemistry Letters | 2012
Amy B. Dounay; Marie Anderson; Bruce M. Bechle; Brian M. Campbell; Michelle Marie Claffey; Artem G. Evdokimov; Edelweiss Evrard; Kari R. Fonseca; Xinmin Gan; Somraj Ghosh; Matthew Merrill Hayward; Weldon Horner; Ji-Young Kim; Laura A. McAllister; Jayvardhan Pandit; Vanessa Paradis; Vinod D. Parikh; Matthew R. Reese; Suobao Rong; Michelle A. Salafia; Katherine Schuyten; Christine A. Strick; Jamison B. Tuttle; James Valentine; Hong Wang; Laura E. Zawadzke; Patrick Robert Verhoest
Kynurenine aminotransferase (KAT) II has been identified as a potential new target for the treatment of cognitive impairment associated with schizophrenia and other psychiatric disorders. Following a high-throughput screen, cyclic hydroxamic acid PF-04859989 was identified as a potent and selective inhibitor of human and rat KAT II. An X-ray crystal structure and (13)C NMR studies of PF-04859989 bound to KAT II have demonstrated that this compound forms a covalent adduct with the enzyme cofactor, pyridoxal phosphate (PLP), in the active site. In vivo pharmacokinetic and efficacy studies in rat show that PF-04859989 is a brain-penetrant, irreversible inhibitor and is capable of reducing brain kynurenic acid by 50% at a dose of 10 mg/kg (sc). Preliminary structure-activity relationship investigations have been completed and have identified the positions on this scaffold best suited to modification for further optimization of this novel series of KAT II inhibitors.
Bioorganic & Medicinal Chemistry Letters | 2012
Laura A. McAllister; Justin Ian Montgomery; Joseph A. Abramite; Usa Reilly; Matthew Frank Brown; Jinshan M. Chen; Rose Barham; Ye Che; Seung Won Chung; Carol A. Menard; Mark J. Mitton-Fry; Lisa Mullins; Mark C. Noe; John P. O’Donnell; Robert M. Oliver; Joseph Penzien; Mark Stephen Plummer; Loren M. Price; Veerabahu Shanmugasundaram; Andrew P. Tomaras; Daniel P. Uccello
The synthesis and antibacterial activity of heterocyclic methylsulfone hydroxamates is presented. Compounds in this series are potent inhibitors of the LpxC enzyme, a key enzyme involved in the production of lipopolysaccharide (LPS) found in the outer membrane of Gram-negative bacteria. SAR evaluation of compounds in this series revealed analogs with potent antibacterial activity against challenging Gram-negative species such as Pseudomonas aeruginosa and Klebsiella pneumoniae.
Journal of Organic Chemistry | 2011
Laura A. McAllister; Bruce M. Bechle; Amy B. Dounay; Edelweiss Evrard; Xinmin Gan; Somraj Ghosh; Ji-Young Kim; Vinod D. Parikh; Jamison B. Tuttle; Patrick Robert Verhoest
We describe a generalized approach to stereocontrolled synthesis of substituted cyclic hydroxamic acids (3-amino-1-hydroxy-3,4-dihydroquinolinones) by selective reduction of substituted 2-nitrophenylalanine substrates. Compounds in this series have antibacterial properties and have also recently been reported as KAT II inhibitors. The key nitrophenyl alanine intermediates are prepared enantioselectively in excellent yield by phase transfer catalyzed alkylation of the corresponding nitrobenzyl bromides. The scope and limitations of the reductive cyclization transformation have been explored with attention to the effects of substitution pattern and electronics on reaction efficiency and byproduct formation. In addition, a novel activated trifluoroethyl ester cyclization strategy has been developed as an alternate approach to the most sterically demanding systems in this series.
ACS Medicinal Chemistry Letters | 2013
Jamison B. Tuttle; Marie Anderson; Bruce M. Bechle; Brian M. Campbell; Cheng Chang; Amy B. Dounay; Edelweiss Evrard; Kari R. Fonseca; Xinmin Gan; Somraj Ghosh; Weldon Horner; Larry C. James; Ji-Young Kim; Laura A. McAllister; Jayvardhan Pandit; Vinod D. Parikh; Brian Rago; Michelle A. Salafia; Christine A. Strick; Laura E. Zawadzke; Patrick Robert Verhoest
A series of aryl hydroxamates recently have been disclosed as irreversible inhibitors of kynurenine amino transferase II (KAT II), an enzyme that may play a role in schizophrenia and other psychiatric and neurological disorders. The utilization of structure-activity relationships (SAR) in conjunction with X-ray crystallography led to the discovery of hydroxamate 4, a disubstituted analogue that has a significant potency enhancement due to a novel interaction with KAT II. The use of k inact/K i to assess potency was critical for understanding the SAR in this series and for identifying compounds with improved pharmacodynamic profiles.
ACS Chemical Biology | 2014
Jan-Philip Schülke; Laura A. McAllister; Kieran F. Geoghegan; Vinod D. Parikh; Thomas A. Chappie; Patrick Robert Verhoest; Christopher J. Schmidt; Douglas S. Johnson; Nicholas J. Brandon
Phosphodiesterases (PDEs) regulate the levels of the second messengers cAMP and cGMP and are important drug targets. PDE10A is highly enriched in medium spiny neurons of the striatum and is an attractive drug target for the treatment of basal ganglia diseases like schizophrenia, Parkinsons disease, or Huntingtons disease. Here we describe the design, synthesis, and application of a variety of chemical biology probes, based on the first clinically tested PDE10A inhibitor MP-10, which were used to characterize the chemoproteomic profile of the clinical candidate in its native environment. A clickable photoaffinity probe was used to measure target engagement of MP-10 and revealed differences between whole cell and membrane preparations. Moreover, our results illustrate the importance of the linker design in the creation of functional probes. Biotinylated affinity probes allowed identification of drug-interaction partners in rodent and human tissue and quantitative mass spectrometry analysis revealed highly specific binding of MP-10 to PDE10A with virtually no off-target binding. The profiling of PDE10A chemical biology probes described herein illustrates a strategy by which high affinity inhibitors can be converted into probes for determining selectivity and target engagement of drug candidates in complex biological matrices from native sources.
Bioorganic & Medicinal Chemistry Letters | 2013
Amy B. Dounay; Marie Anderson; Bruce M. Bechle; Edelweiss Evrard; Xinmin Gan; Ji-Young Kim; Laura A. McAllister; Jayvardhan Pandit; Suobao Rong; Michelle A. Salafia; Jamison B. Tuttle; Laura E. Zawadzke; Patrick Robert Verhoest
The structure-based design, synthesis, and biological evaluation of a new pyrazole series of irreversible KAT II inhibitors are described herein. The modification of the inhibitor scaffold of 1 and 2 from a dihydroquinolinone core to a tetrahydropyrazolopyridinone core led to discovery of a new series of potent KAT II inhibitors with excellent physicochemical properties. Compound 20 is the most potent and lipophilically efficient of these new pyrazole analogs, with a k(inact)/K(i) value of 112,000 M(-1)s(-1) and lipophilic efficiency (LipE) of 8.53. The X-ray crystal structure of 20 with KAT II demonstrates key features that contribute to this remarkable potency and binding efficiency.
MedChemComm | 2013
Jaclyn Louise Henderson; Aarti Sawant-Basak; Jamison B. Tuttle; Amy B. Dounay; Laura A. McAllister; Jayvardhan Pandit; Suobao Rong; Xinjun Hou; Bruce M. Bechle; Ji-Young Kim; Vinod D. Parikh; Somraj Ghosh; Edelweiss Evrard; Laura E. Zawadzke; Michelle A. Salafia; Brian Rago; Obach Rs; Alan J Clark; Kari R. Fonseca; Cheng Chang; Patrick Robert Verhoest
A series of kynurenine aminotransferase II (KAT II) inhibitors has been developed replacing the hydroxamate motif with a bioisostere. Triazolinones or triazoles have proven to be effective replacements with significantly improved pharmacokinetics including reduced clearance and increased bioavailability. An X-ray crystal structure of an inhibitor bound in KAT II confirms that the irreversible binding to the co-factor is maintained and that the heterocycles make productive hydrogen bonds to the arginine-399.
The Journal of Antibiotics | 2015
Justin Ian Montgomery; James F. Smith; Andrew P. Tomaras; Richard P. Zaniewski; Craig J. McPherson; Laura A. McAllister; Sandra Hartman-Neumann; Marykay Lescoe; Jemy A. Gutierrez; Ying Yuan; Chris Limberakis; Alita A. Miller
A high-throughput phenotypic screen for novel antibacterial agents led to the discovery of a novel pyrazolopyrimidinedione, PPD-1, with preferential activity against methicillin-resistant Staphylococcus aureus (MRSA). Resistance mapping revealed the likely target of inhibition to be lysyl tRNA synthetase (LysRS). Preliminary structure–activity relationship (SAR) studies led to an analog, PPD-2, which gained Gram-negative antibacterial activity at the expense of MRSA activity and resistance to this compound mapped to prolyl tRNA synthetase (ProRS). These targets of inhibition were confirmed in vitro, with PPD-1 showing IC50s of 21.7 and 35u2009μM in purified LysRS and ProRS enzyme assays, and PPD-2, 151 and 0.04u2009μM, respectively. The highly attractive chemical properties of these compounds combined with intriguing preliminary SAR suggest that further exploration of this compelling novel series is warranted.
Organic Letters | 2011
Seung Won Chung; Mark Stephen Plummer; Laura A. McAllister; Robert M. Oliver; Joseph A. Abramite; Yue Shen; Jianmin Sun; Daniel P. Uccello; Loren M. Price; Justin Ian Montgomery
An efficient method was developed for the synthesis of 2-methylene-4-substituted ethyl butyrates via cyclopropyl opening followed by a Wittig reaction. The desired products were formed in a two-step, one-pot reaction sequence. Alternatively, the key intermediate ylide 2 was isolable and could be stored under oxygen-free conditions and subsequently utilized. A variety of nucleophiles were found to open the commercially available cyclopropane 1. The resulting ylide reacted with aldehydes to provide E-olefinic products.