Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Bruce R. Cooper is active.

Publication


Featured researches published by Bruce R. Cooper.


The Plant Cell | 2010

RNAi Suppression of Arogenate Dehydratase1 Reveals That Phenylalanine Is Synthesized Predominantly via the Arogenate Pathway in Petunia Petals

Hiroshi Maeda; Ajit Kumar Shasany; Jennifer Schnepp; Irina Orlova; Goro Taguchi; Bruce R. Cooper; David Rhodes; Eran Pichersky; Natalia Dudareva

This study analyzed the l-Phe biosynthetic pathways in Petunia hybrida flowers, which emit high levels of Phe-derived volatiles. RNA interference suppression of petunia arogenate dehydratase1 provides in planta evidence that l-Phe is synthesized via arogenate and uncovers a novel posttranscriptional regulation of the shikimate pathway. l-Phe, a protein building block and precursor of numerous phenolic compounds, is synthesized from prephenate via an arogenate and/or phenylpyruvate route in which arogenate dehydratase (ADT) or prephenate dehydratase, respectively, plays a key role. Here, we used Petunia hybrida flowers, which are rich in Phe-derived volatiles, to determine the biosynthetic routes involved in Phe formation in planta. Of the three identified petunia ADTs, expression of ADT1 was the highest in petunia petals and positively correlated with endogenous Phe levels throughout flower development. ADT1 showed strict substrate specificity toward arogenate, although with the lowest catalytic efficiency among the three ADTs. ADT1 suppression via RNA interference in petunia petals significantly reduced ADT activity, levels of Phe, and downstream phenylpropanoid/benzenoid volatiles. Unexpectedly, arogenate levels were unaltered, while shikimate and Trp levels were decreased in transgenic petals. Stable isotope labeling experiments showed that ADT1 suppression led to downregulation of carbon flux toward shikimic acid. However, an exogenous supply of shikimate bypassed this negative regulation and resulted in elevated arogenate accumulation. Feeding with shikimate also led to prephenate and phenylpyruvate accumulation and a partial recovery of the reduced Phe level in transgenic petals, suggesting that the phenylpyruvate route can also operate in planta. These results provide genetic evidence that Phe is synthesized predominantly via arogenate in petunia petals and uncover a novel posttranscriptional regulation of the shikimate pathway.


The Plant Cell | 2012

Contribution of CoA Ligases to Benzenoid Biosynthesis in Petunia Flowers

Antje Klempien; Yasuhisa Kaminaga; Anthony V. Qualley; Dinesh A. Nagegowda; Joshua R. Widhalm; Irina Orlova; Ajit Kumar Shasany; Goro Taguchi; Christine M. Kish; Bruce R. Cooper; John D'Auria; David Rhodes; Eran Pichersky; Natalia Dudareva

Biochemical and genetic characterization of two petunia CoA ligases reveals that subcellular compartmentalization of enzymes determines their involvement in the benzenoid metabolic network. Additional evidence shows that formation of cinnamoyl-CoA in peroxisomes is the committed step in the synthesis of benzoyl-CoA via the β-oxidative pathway. Biosynthesis of benzoic acid from Phe requires shortening of the side chain by two carbons, which can occur via the β-oxidative or nonoxidative pathways. The first step in the β-oxidative pathway is cinnamoyl-CoA formation, likely catalyzed by a member of the 4-coumarate:CoA ligase (4CL) family that converts a range of trans-cinnamic acid derivatives into the corresponding CoA thioesters. Using a functional genomics approach, we identified two potential CoA-ligases from petunia (Petunia hybrida) petal-specific cDNA libraries. The cognate proteins share only 25% amino acid identity and are highly expressed in petunia corollas. Biochemical characterization of the recombinant proteins revealed that one of these proteins (Ph-4CL1) has broad substrate specificity and represents a bona fide 4CL, whereas the other is a cinnamate:CoA ligase (Ph-CNL). RNA interference suppression of Ph-4CL1 did not affect the petunia benzenoid scent profile, whereas downregulation of Ph-CNL resulted in a decrease in emission of benzylbenzoate, phenylethylbenzoate, and methylbenzoate. Green fluorescent protein localization studies revealed that the Ph-4CL1 protein is localized in the cytosol, whereas Ph-CNL is in peroxisomes. Our results indicate that subcellular compartmentalization of enzymes affects their involvement in the benzenoid network and provide evidence that cinnamoyl-CoA formation by Ph-CNL in the peroxisomes is the committed step in the β-oxidative pathway.


Nature Communications | 2013

An alternative pathway contributes to phenylalanine biosynthesis in plants via a cytosolic tyrosine:phenylpyruvate aminotransferase

Heejin Yoo; Joshua R. Widhalm; Yichun Qian; Hiroshi Maeda; Bruce R. Cooper; Amber Jannasch; Itay Gonda; Efraim Lewinsohn; David Rhodes; Natalia Dudareva

Phenylalanine is a vital component of proteins in all living organisms, and in plants is a precursor for thousands of additional metabolites. Animals are incapable of synthesizing phenylalanine and must primarily obtain it directly or indirectly from plants. Although plants can synthesize phenylalanine in plastids through arogenate, the contribution of an alternative pathway via phenylpyruvate, as occurs in most microbes, has not been demonstrated. Here we show that plants also utilize a microbial-like phenylpyruvate pathway to produce phenylalanine, and flux through this route is increased when the entry point to the arogenate pathway is limiting. Unexpectedly, we find the plant phenylpyruvate pathway utilizes a cytosolic aminotransferase that links the coordinated catabolism of tyrosine to serve as the amino donor, thus interconnecting the extra-plastidial metabolism of these amino acids. This discovery uncovers another level of complexity in the plant aromatic amino acid regulatory network, unveiling new targets for metabolic engineering.


Molecular Nutrition & Food Research | 2015

Role of intestinal microbiota in the generation of polyphenol-derived phenolic acid mediated attenuation of Alzheimer's disease β-amyloid oligomerization.

Dongjie Wang; Lap Ho; Jeremiah J. Faith; Kenjiro Ono; Elsa M. Janle; Pamela J. Lachcik; Bruce R. Cooper; Amber Hopf Jannasch; B. R. D'Arcy; Barbara A. Williams; Mario G. Ferruzzi; Samara Levine; Wei Zhao; Lauren Dubner; Giulio Maria Pasinetti

SCOPE Grape seed polyphenol extract (GSPE) is receiving increasing attention for its potential preventative and therapeutic roles in Alzheimers disease (AD) and other age-related neurodegenerative disorders. The intestinal microbiota is known to actively convert many dietary polyphenols, including GSPE, to phenolic acids. There is limited information on the bioavailability and bioactivity of GSPE-derived phenolic acid in the brain. METHODS AND RESULTS We orally administered GSPE to rats and investigated the bioavailability of 12 phenolic acids known to be generated by microbiota metabolism of anthocyanidins. GSPE treatment significantly increased the content of two of the phenolic acids in the brain: 3-hydroxybenzoic acid and 3-(3´-hydroxyphenyl)propionic acid, resulting in the brain accumulations of the two phenolic acids at micromolar concentrations. We also provided evidence that 3-hydroxybenzoic acid and 3-(3´-hydroxyphenyl)propionic acid potently interfere with the assembly of β-amyloid peptides into neurotoxic β-amyloid aggregates that play key roles in AD pathogenesis. CONCLUSION Our observation suggests important contribution of the intestinal microbiota to the protective activities of GSPE (as well as other polyphenol preparations) in AD. Outcomes from our studies support future preclinical and clinical investigations exploring the potential contributions of the intestinal microbiota in protecting against the onset/progression of AD and other neurodegenerative conditions.


Plant Physiology | 2009

The Arabidopsis RESURRECTION1 Gene Regulates a Novel Antagonistic Interaction in Plant Defense to Biotrophs and Necrotrophs

Hyung Gon Mang; Kristin Laluk; Eugene P. Parsons; Dylan K. Kosma; Bruce R. Cooper; Hyeong Cheol Park; Synan AbuQamar; Claudia Boccongelli; Saori Miyazaki; Federica Consiglio; Gabriele Chilosi; Hans J. Bohnert; Ray A. Bressan; Tesfaye Mengiste; Matthew A. Jenks

We report a role for the Arabidopsis (Arabidopsis thaliana) RESURRECTION1 (RST1) gene in plant defense. The rst1 mutant exhibits enhanced susceptibility to the biotrophic fungal pathogen Erysiphe cichoracearum but enhanced resistance to the necrotrophic fungal pathogens Botrytis cinerea and Alternaria brassicicola. RST1 encodes a novel protein that localizes to the plasma membrane and is predicted to contain 11 transmembrane domains. Disease responses in rst1 correlate with higher levels of jasmonic acid (JA) and increased basal and B. cinerea-induced expression of the plant defensin PDF1.2 gene but reduced E. cichoracearum-inducible salicylic acid levels and expression of pathogenesis-related genes PR1 and PR2. These results are consistent with rst1s varied resistance and susceptibility to pathogens of different life styles. Cuticular lipids, both cutin monomers and cuticular waxes, on rst1 leaves were significantly elevated, indicating a role for RST1 in the suppression of leaf cuticle lipid synthesis. The rst1 cuticle exhibits normal permeability, however, indicating that the disease responses of rst1 are not due to changes in this cuticle property. Double mutant analysis revealed that the coi1 mutation (causing defective JA signaling) is completely epistatic to rst1, whereas the ein2 mutation (causing defective ethylene signaling) is partially epistatic to rst1, for resistance to B. cinerea. The rst1 mutation thus defines a unique combination of disease responses to biotrophic and necrotrophic fungi in that it antagonizes salicylic acid-dependent defense and enhances JA-mediated defense through a mechanism that also controls cuticle synthesis.


Analytical Biochemistry | 2013

Quantitative LC–MS/MS analysis of arachidonoyl amino acids in mouse brain with treatment of FAAH inhibitor

Bingnan Han; Rachel Wright; Aaron M. Kirchhoff; Julia A. Chester; Bruce R. Cooper; Vincent Jo Davisson; Eric L. Barker

An additional class of endogenous lipid amides, N-arachidonoyl amino acids (Ara-AAs), is growing in significance in the field of endocannabinoids. The development, validation, and application of a sensitive and selective method to simultaneously monitor and quantify the level of Ara-AAs along with anandamide (AEA) and 2-arachidonoyl glycerol (2-AG) in mouse brain has been established. The linearity of the method over the concentration ranges of 0.2-120 pg/μl for the standards of N-arachidonoyl amino acids, N-arachidonoyl alanine (NAAla), serine (NASer), γ-aminobutyric acid (NAGABA), and glycine (NAGly); 0.7-90 pg/μl for AEA-d(0)/d(8); and 7.5-950 pg/μl for 2-AG was determined with R(2) values of 0.99. Also the effects of the FAAH inhibitor URB 597 on the endogenous levels of these analytes were investigated. AEA and NASer brain levels exhibit a dose-dependent increase after systemic administration of URB 597, whereas NAGly and NAGABA were significantly decreased after treatment. NAAla and 2-AG were not altered after URB 597 treatment. The potential benefit of establishing this assay extends beyond the quantification of the Ara-AAs along with AEA and 2-AG in mouse brain, to reveal a variety of pharmacological effects and physiological roles of these analytes.


Journal of Chromatography B | 2013

Quantification of vitamin D and 25-hydroxyvitamin D in soft tissues by liquid chromatography-tandem mass spectrometry.

Tristan E. Lipkie; Amber Janasch; Bruce R. Cooper; Emily E. Hohman; Connie M. Weaver; Mario G. Ferruzzi

Inadequate data on tissue distribution of vitamin D and its metabolites remains a barrier to defining health outcomes of vitamin D intake and 25-hydroxyvitamin D (25(OH)D) status. The purpose of this study was to develop a method for the analysis of vitamin D2 (ergocalciferol), vitamin D3 (cholecalciferol), 25(OH)D2, and 25(OH)D3 in soft tissues, and determine distribution in select tissues from a dose-response study of vitamin D2 and vitamin D3 in rats. Liver, gastrocnemius muscle, and epididymal fat homogenates were analyzed by liquid chromatography-tandem mass spectrometry (LC-MS/MS) with electrospray ionization following liquid-liquid extraction, solid-phase extraction, and derivatization with 4-phenyl-1,2,4-triazoline-3,5-dione (PTAD). A dose-response was observed in most tissues for vitamin D and 25(OH)D from both vitamers. Vitamin D concentration was greater in epididymal fat than gastrocnemius muscle and liver, but 25(OH)D concentration was not significantly different between tissues. Soft tissues of rats fed crystalline vitamin D3 had higher concentrations of total vitamin D than those of rats fed yeast-derived vitamin D2, while total 25(OH)D concentrations were similar between vitamin D sources. This method is well suited to more complete studies of vitamin D bioavailability and metabolite tissue distribution.


Science of The Total Environment | 2013

Detection of Herbicides in the Urine of Pet Dogs Following Home Lawn Chemical Application

Deborah W. Knapp; Wendy Ann Peer; Abass Conteh; Alfred R. Diggs; Bruce R. Cooper; Nita W. Glickman; Patty L. Bonney; Jane C. Stewart; Lawrence T. Glickman; Angus S. Murphy

Exposure to herbicide-treated lawns has been associated with significantly higher bladder cancer risk in dogs. This work was performed to further characterize lawn chemical exposures in dogs, and to determine environmental factors associated with chemical residence time on grass. In addition to concern for canine health, a strong justification for the work was that dogs may serve as sentinels for potentially harmful environmental exposures in humans. Experimentally, herbicides [2,4-dichlorophenoxyacetic acid (2,4-D), 4-chloro-2-methylphenoxypropionic acid (MCPP), dicamba] were applied to grass plots under different conditions (e.g., green, dry brown, wet, and recently mowed grass). Chemicals in dislodgeable residues were measured by LC-MS at 0.17, 1, 24, 48, 72 h post treatment. In a separate study, 2,4-D, MCPP, and dithiopyr concentrations were measured in the urine of dogs and in dislodgeable grass residues in households that applied or did not apply chemicals in the preceding 48 h. Chemicals were measured at 0, 24, and 48 h post application in treated households and at time 0 in untreated control households. Residence times of 2,4-D, MCPP, and dicamba were significantly prolonged (P<0.05) on dry brown grass compared to green grass. Chemicals were detected in the urine of dogs in 14 of 25 households before lawn treatment, in 19 of 25 households after lawn treatment, and in 4 of 8 untreated households. Chemicals were commonly detected in grass residues from treated lawns, and from untreated lawns suggesting chemical drift from nearby treated areas. Thus dogs could be exposed to chemicals through contact with their own lawn (treated or contaminated through drift) or through contact with other grassy areas if they travel. The length of time to restrict a dogs access to treated lawns following treatment remains to be defined. Further study is indicated to assess the risks of herbicide exposure in humans and dogs.


Journal of Agricultural and Food Chemistry | 2015

Synthesis and Quantitative Analysis of Plasma-Targeted Metabolites of Catechin and Epicatechin

Jack W. Blount; Benjamin W. Redan; Mario G. Ferruzzi; Bradley L. Reuhs; Bruce R. Cooper; John S. Harwood; Vladimir Shulaev; Giulio Maria Pasinetti; Richard A. Dixon

Grape seed polyphenolic extract (GSPE) rich in the flavan-3-ols (+)-catechin and (-)-epicatechin beneficially modulates Alzheimers Disease phenotypes in animal models. The parent molecules in the extract are converted to a series of methylated and glucuronidated derivatives. To fully characterize these metabolites and establish a robust quantitative assay of their levels in biological fluids, we have implemented a partial synthetic approach utilizing chemical methylation followed by enzymatic glucuronidation. Liquid chromatography/time-of-flight mass spectrometry (LC-TOF-MS) and nuclear magnetic resonance (NMR) spectroscopy were used to assign unequivocal structures to the compounds. An analytical method using solid-phase extraction and LC-MS/MS in selective reaction monitoring mode (SRM) was validated for their quantitation in plasma. These studies provide a basis for improvements in future work on the bioavailability, metabolism, and mechanism of action of metabolites derived from dietary flavan-3-ols in a range of interventions.


Analytical Biochemistry | 2012

Profiling hydroxycinnamoyl-coenzyme A thioesters: Unlocking the back door of phenylpropanoid metabolism

Anthony V. Qualley; Bruce R. Cooper; Natalia Dudareva

In plants, 20 to 30% of photosynthetically fixed carbon is directed toward lignin and other phenylpropanoid compounds for which hydroxycinnamoyl-coenzyme A (CoA) esters are key intermediates. CoA thioesters, ubiquitous metabolites found in all living cells (often at trace levels), have traditionally been challenging to measure. Here we report a hydrophilic interaction liquid chromatography (HILIC) method, coupled with tandem mass spectrometry (MS/MS), that allows simultaneous sensitive quantification of previously undetectable hydroxycinnamoyl-CoA esters and an extended range of acyl-CoAs from plant tissues. This method provides rapid liquid chromatography (LC) analysis (10 min/sample) and the ability for qualitative assessment of acyl-CoAs by MS/MS precursor ion scanning.

Collaboration


Dive into the Bruce R. Cooper's collaboration.

Top Co-Authors

Avatar

Mario G. Ferruzzi

North Carolina State University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Giulio Maria Pasinetti

Icahn School of Medicine at Mount Sinai

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge