Bruno D. Valente
University of Wisconsin-Madison
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Bruno D. Valente.
Genetics Selection Evolution | 2011
Guilherme J. M. Rosa; Bruno D. Valente; Gustavo de los Campos; Xiao Lin Wu; Daniel Gianola; Martinho de Almeida e Silva
Phenotypic traits may exert causal effects between them. For example, on the one hand, high yield in dairy cows may increase the liability to certain diseases and, on the other hand, the incidence of a disease may affect yield negatively. Likewise, the transcriptome may be a function of the reproductive status in mammals and the latter may depend on other physiological variables. Knowledge of phenotype networks describing such interrelationships can be used to predict the behavior of complex systems, e.g. biological pathways underlying complex traits such as diseases, growth and reproduction. Structural Equation Models (SEM) can be used to study recursive and simultaneous relationships among phenotypes in multivariate systems such as genetical genomics, system biology, and multiple trait models in quantitative genetics. Hence, SEM can produce an interpretation of relationships among traits which differs from that obtained with traditional multiple trait models, in which all relationships are represented by symmetric linear associations among random variables, such as covariances and correlations. In this review, we discuss the application of SEM and related techniques for the study of multiple phenotypes. Two basic scenarios are considered, one pertaining to genetical genomics studies, in which QTL or molecular marker information is used to facilitate causal inference, and another related to quantitative genetic analysis in livestock, in which only phenotypic and pedigree information is available. Advantages and limitations of SEM compared to traditional approaches commonly used for the analysis of multiple traits, as well as some indication of future research in this area are presented in a concluding section.
Genetics | 2010
Bruno D. Valente; Guilherme J. M. Rosa; Gustavo de los Campos; Daniel Gianola; Martinho de Almeida e Silva
Biology is characterized by complex interactions between phenotypes, such as recursive and simultaneous relationships between substrates and enzymes in biochemical systems. Structural equation models (SEMs) can be used to study such relationships in multivariate analyses, e.g., with multiple traits in a quantitative genetics context. Nonetheless, the number of different recursive causal structures that can be used for fitting a SEM to multivariate data can be huge, even when only a few traits are considered. In recent applications of SEMs in mixed-model quantitative genetics settings, causal structures were preselected on the basis of prior biological knowledge alone. Therefore, the wide range of possible causal structures has not been properly explored. Alternatively, causal structure spaces can be explored using algorithms that, using data-driven evidence, can search for structures that are compatible with the joint distribution of the variables under study. However, the search cannot be performed directly on the joint distribution of the phenotypes as it is possibly confounded by genetic covariance among traits. In this article we propose to search for recursive causal structures among phenotypes using the inductive causation (IC) algorithm after adjusting the data for genetic effects. A standard multiple-trait model is fitted using Bayesian methods to obtain a posterior covariance matrix of phenotypes conditional to unobservable additive genetic effects, which is then used as input for the IC algorithm. As an illustrative example, the proposed methodology was applied to simulated data related to multiple traits measured on a set of inbred lines.
Genetics | 2013
Bruno D. Valente; Guilherme J. M. Rosa; Daniel Gianola; Xiao-Lin Wu; Kent A. Weigel
Structural equation models (SEMs) are multivariate specifications capable of conveying causal relationships among traits. Although these models offer insights into how phenotypic traits relate to each other, it is unclear whether and how they can improve multiple-trait selection. Here, we explored concepts involved in SEMs, seeking for benefits that could be brought to breeding programs, relative to the standard multitrait model (MTM) commonly used. Genetic effects pertaining to SEMs and MTMs have distinct meanings. In SEMs, they represent genetic effects acting directly on each trait, without mediation by other traits in the model; in MTMs they express overall genetic effects on each trait, equivalent to lumping together direct and indirect genetic effects discriminated by SEMs. However, in breeding programs the goal is selecting candidates that produce offspring with best phenotypes, regardless of how traits are causally associated, so overall additive genetic effects are the matter. Thus, no information is lost in standard settings by using MTM-based predictions, even if traits are indeed causally associated. Nonetheless, causal information allows predicting effects of external interventions. One may be interested in predictions for scenarios where interventions are performed, e.g., artificially defining the value of a trait, blocking causal associations, or modifying their magnitudes. We demonstrate that with information provided by SEMs, predictions for these scenarios are possible from data recorded under no interventions. Contrariwise, MTMs do not provide information for such predictions. As livestock and crop production involves interventions such as management practices, SEMs may be advantageous in many settings.
Journal of Animal Breeding and Genetics | 2014
Rostam Abdollahi-Arpanahi; A. Pakdel; A. Nejati-Javaremi; M. Moradi Shahrbabak; Gota Morota; Bruno D. Valente; Andreas Kranis; Guilherme J. M. Rosa; Daniel Gianola
The aim of this study was to separate marked additive genetic variability for three quantitative traits in chickens into components associated with classes of minor allele frequency (MAF), individual chromosomes and marker density using the genomewide complex trait analysis (GCTA) approach. Data were from 1351 chickens measured for body weight (BW), ultrasound of breast muscle (BM) and hen house egg production (HHP), each bird with 354 364 SNP genotypes. Estimates of variance components show that SNPs on commercially available genotyping chips marked a large amount of genetic variability for all three traits. The estimated proportion of total variation tagged by all autosomal SNPs was 0.30 (SE 0.04) for BW, 0.33 (SE 0.04) for BM, and 0.19 (SE 0.05) for HHP. We found that a substantial proportion of this variation was explained by low frequency variants (MAF <0.20) for BW and BM, and variants with MAF 0.10-0.30 for HHP. The marked genetic variance explained by each chromosome was linearly related to its length (R(2) = 0.60) for BW and BM. However, for HHP, there was no linear relationship between estimates of variance and length of the chromosome (R(2) = 0.01). Our results suggest that the contribution of SNPs to marked additive genetic variability is dependent on the allele frequency spectrum. For the sample of birds analysed, it was found that increasing marker density beyond 100K SNPs did not capture additional additive genetic variance.
Genetics Selection Evolution | 2011
Bruno D. Valente; Guilherme J. M. Rosa; Martinho de Almeida e Silva; Rafael Bastos Teixeira; Robledo de Almeida Torres
BackgroundStructural equation models (SEM) are used to model multiple traits and the casual links among them. The number of different causal structures that can be used to fit a SEM is typically very large, even when only a few traits are studied. In recent applications of SEM in quantitative genetics mixed model settings, causal structures were pre-selected based on prior beliefs alone. Alternatively, there are algorithms that search for structures that are compatible with the joint distribution of the data. However, such a search cannot be performed directly on the joint distribution of the phenotypes since causal relationships are possibly masked by genetic covariances. In this context, the application of the Inductive Causation (IC) algorithm to the joint distribution of phenotypes conditional to unobservable genetic effects has been proposed.MethodsHere, we applied this approach to five traits in European quail: birth weight (BW), weight at 35 days of age (W35), age at first egg (AFE), average egg weight from 77 to 110 days of age (AEW), and number of eggs laid in the same period (NE). We have focused the discussion on the challenges and difficulties resulting from applying this method to field data. Statistical decisions regarding partial correlations were based on different Highest Posterior Density (HPD) interval contents and models based on the selected causal structures were compared using the Deviance Information Criterion (DIC). In addition, we used temporal information to perform additional edge orienting, overriding the algorithm output when necessary.ResultsAs a result, the final causal structure consisted of two separated substructures: BW→AEW and W35→AFE→NE, where an arrow represents a direct effect. Comparison between a SEM with the selected structure and a Multiple Trait Animal Model using DIC indicated that the SEM is more plausible.ConclusionsCoupling prior knowledge with the output provided by the IC algorithm allowed further learning regarding phenotypic causal structures when compared to standard mixed effects SEM applications.
Genetics Selection Evolution | 2014
Aniek C. Bouwman; Bruno D. Valente; Luc Janss; H. Bovenhuis; Guilherme J. M. Rosa
BackgroundKnowledge regarding causal relationships among traits is important to understand complex biological systems. Structural equation models (SEM) can be used to quantify the causal relations between traits, which allow prediction of outcomes to interventions applied to such a network. Such models are fitted conditionally on a causal structure among traits, represented by a directed acyclic graph and an Inductive Causation (IC) algorithm can be used to search for causal structures. The aim of this study was to explore the space of causal structures involving bovine milk fatty acids and to select a network supported by data as the structure of a SEM.ResultsThe IC algorithm adapted to mixed models settings was applied to study 14 correlated bovine milk fatty acids, resulting in an undirected network. The undirected pathway from C4:0 to C12:0 resembled the de novo synthesis pathway of short and medium chain saturated fatty acids. By using prior knowledge, directions were assigned to that part of the network and the resulting structure was used to fit a SEM that led to structural coefficients ranging from 0.85 to 1.05. The deviance information criterion indicated that the SEM was more plausible than the multi-trait model.ConclusionsThe IC algorithm output pointed towards causal relations between the studied traits. This changed the focus from marginal associations between traits to direct relationships, thus towards relationships that may result in changes when external interventions are applied. The causal structure can give more insight into underlying mechanisms and the SEM can predict conditional changes due to such interventions.
Journal of Animal Science | 2013
Guilherme J. M. Rosa; Bruno D. Valente
Data regularly recorded in commercial herds have been used extensively for estimation of disease incidence rates, for inferences regarding genetic and phenotypic associations between traits, or for developing predictive models for economically important traits. Some studies have also used field data to investigate potential causal relationships between variables. However, inferring causal effects from observational data is complex due to potential confounding effects and careful analyses using specific statistical and data mining techniques as well as different sets of assumptions are required. Nonetheless, although virtually unknown in the agricultural research community, such methods are available and have been used in many other fields. In this paper, we review and discuss the analysis of observational data using field-recorded information and its potential utility in the study of causal effects in livestock. It is our postulation that there is much to be learned from such data, which can be used either to explicitly investigate causal relationships between variables or to generate hypotheses for further investigation using controlled experiments or additional field-recorded data.
Genetics | 2015
Bruno D. Valente; Gota Morota; Francisco Peñagaricano; Daniel Gianola; Kent A. Weigel; Guilherme J. M. Rosa
The term “effect” in additive genetic effect suggests a causal meaning. However, inferences of such quantities for selection purposes are typically viewed and conducted as a prediction task. Predictive ability as tested by cross-validation is currently the most acceptable criterion for comparing models and evaluating new methodologies. Nevertheless, it does not directly indicate if predictors reflect causal effects. Such evaluations would require causal inference methods that are not typical in genomic prediction for selection. This suggests that the usual approach to infer genetic effects contradicts the label of the quantity inferred. Here we investigate if genomic predictors for selection should be treated as standard predictors or if they must reflect a causal effect to be useful, requiring causal inference methods. Conducting the analysis as a prediction or as a causal inference task affects, for example, how covariates of the regression model are chosen, which may heavily affect the magnitude of genomic predictors and therefore selection decisions. We demonstrate that selection requires learning causal genetic effects. However, genomic predictors from some models might capture noncausal signal, providing good predictive ability but poorly representing true genetic effects. Simulated examples are used to show that aiming for predictive ability may lead to poor modeling decisions, while causal inference approaches may guide the construction of regression models that better infer the target genetic effect even when they underperform in cross-validation tests. In conclusion, genomic selection models should be constructed to aim primarily for identifiability of causal genetic effects, not for predictive ability.
Poultry Science | 2015
Vivian P. S. Felipe; Martinho de Almeida e Silva; Bruno D. Valente; Guilherme J. M. Rosa
The prediction of total egg production (TEP) potential in poultry is an important task to aid optimized management decisions in commercial enterprises. The objective of the present study was to compare different modeling approaches for prediction of TEP in meat type quails (Coturnix coturnix coturnix) using phenotypes such as weight, weight gain, egg production and egg quality measurements. Phenotypic data on 30 traits from two lines (L1, n=180; and L2, n=205) of quail were modeled to predict TEP. Prediction models included multiple linear regression and artificial neural network (ANN). Moreover, Bayesian network (BN) and a stepwise approach were used as variable selection methods. BN results showed that TEP is independent from other earlier expressed traits when conditioned on egg production from 35 to 80 days of age (EP1). In addition, the prediction accuracy was much lower when EP1 was not included in the model. The best predictive model was ANN, after feature selection, showing prediction correlations of r=0.792 and r=0.714 for L1 and L2, respectively. In conclusion, machine learning methods may be useful, but reasonable prediction accuracies are obtained only when partial egg production measurements are included in the model.
BMC Systems Biology | 2015
Francisco Peñagaricano; Bruno D. Valente; Juan P. Steibel; R. O. Bates; C. W. Ernst; Hasan Khatib; Guilherme J. M. Rosa
BackgroundJoint modeling and analysis of phenotypic, genotypic and transcriptomic data have the potential to uncover the genetic control of gene activity and phenotypic variation, as well as shed light on the manner and extent of connectedness among these variables. Current studies mainly report associations, i.e. undirected connections among variables without causal interpretation. Knowledge regarding causal relationships among genes and phenotypes can be used to predict the behavior of complex systems, as well as to optimize management practices and selection strategies. Here, we performed a multistep procedure for inferring causal networks underlying carcass fat deposition and muscularity in pigs using multi-omics data obtained from an F2 Duroc x Pietrain resource pig population.ResultsWe initially explored marginal associations between genotypes and phenotypic and expression traits through whole-genome scans, and then, in genomic regions with multiple significant hits, we assessed gene-phenotype network reconstruction using causal structural learning algorithms. One genomic region on SSC6 showed significant associations with three relevant phenotypes, off-midline10th-rib backfat thickness, loin muscle weight, and average intramuscular fat percentage, and also with the expression of seven genes, including ZNF24, SSX2IP, and AKR7A2. The inferred network indicated that the genotype affects the three phenotypes mainly through the expression of several genes. Among the phenotypes, fat deposition traits negatively affected loin muscle weight.ConclusionsOur findings shed light on the antagonist relationship between carcass fat deposition and lean meat content in pigs. In addition, the procedure described in this study has the potential to unravel gene-phenotype networks underlying complex phenotypes.