Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Bruno Hernáez is active.

Publication


Featured researches published by Bruno Hernáez.


Journal of Virology | 2001

African Swine Fever Virus Protein p54 Interacts with the Microtubular Motor Complex through Direct Binding to Light-Chain Dynein

Covadonga Alonso; James E. Miskin; Bruno Hernáez; Patricia Fernandez-Zapatero; Lourdes Soto; Carmen Cantó; Ignacio Rodríguez-Crespo; Linda K. Dixon; José M. Escribano

ABSTRACT Dynein is a minus-end-directed microtubule-associated motor protein involved in cargo transport in the cytoplasm. African swine fever virus (ASFV), a large DNA virus, hijacks the microtubule motor complex cellular transport machinery during virus infection of the cell through direct binding of virus protein p54 to the light chain of cytoplasmic dynein (LC8). Interaction of p54 and LC8 occurs both in vitro and in cells, and the two proteins colocalize at the microtubular organizing center during viral infection. p50/dynamitin, a dominant-negative inhibitor of dynein-dynactin function, impeded ASFV infection, suggesting an essential role for dynein during virus infection. A 13-amino-acid domain of p54 was sufficient for binding to LC8, an SQT motif within this domain being critical for this binding. Direct binding of a viral structural protein to LC8, a small molecule of the dynein motor complex, could constitute a molecular mechanism for microtubule-mediated virus transport.


ACS Nano | 2012

Monosaccharides versus PEG-Functionalized NPs: Influence in the Cellular Uptake

María Moros; Bruno Hernáez; Elina Garet; Jorge T. Dias; Berta Sáez; Valeria Grazú; África González-Fernández; Covadonga Alonso; Jesús M. de la Fuente

Magnetic nanoparticles (NPs) hold great promise for biomedical applications. The core composition and small size of these particles produce superparamagnetic behavior, thus facilitating their use in magnetic resonance imaging and magnetically induced therapeutic hyperthermia. However, the development and control of safe in vivo applications for NPs call for the study of cell-NP interactions and cell viability. Furthermore, as for most biotechnological applications, it is desirable to prevent unspecific cell internalization of these particles. It is also crucial to understand how the surface composition of the NPs affects their internalization capacity. Here, through accurate control over unspecific protein adsorption, size distribution, grafting density, and an extensive physicochemical characterization, we correlated the cytotoxicity and cellular uptake mechanism of 6 nm magnetic NPs coated with several types and various densities of biomolecules, such as glucose, galactose, and poly(ethylene glycol). We found that the density of the grafted molecule was crucial to prevent unspecific uptake of NPs by Vero cells. Surprisingly, the glucose-coated NPs described here showed cellular uptake as a result of lipid raft instead of clathrin-mediated cellular internalization. Moreover, these glucose-functionalized NPs could be one of the first examples of NPs being endocytosed by caveolae that finally end up in the lysosomes. These results reinforce the use of simple carbohydrates as an alternative to PEG molecules for NPs functionalization when cellular uptake is required.


Journal of Virology | 2010

Dynamin- and Clathrin-Dependent Endocytosis in African Swine Fever Virus Entry

Bruno Hernáez; Covadonga Alonso

ABSTRACT African swine fever virus (ASFV) is a large DNA virus that enters host cells after receptor-mediated endocytosis and depends on acidic cellular compartments for productive infection. The exact cellular mechanism, however, is largely unknown. In order to dissect ASFV entry, we have analyzed the major endocytic routes using specific inhibitors and dominant negative mutants and analyzed the consequences for ASFV entry into host cells. Our results indicate that ASFV entry into host cells takes place by clathrin-mediated endocytosis which requires dynamin GTPase activity. Also, the clathrin-coated pit component Eps15 was identified as a relevant cellular factor during infection. The presence of cholesterol in cellular membranes, but not lipid rafts or caveolae, was found to be essential for a productive ASFV infection. In contrast, inhibitors of the Na+/H+ ion channels and actin polymerization inhibition did not significantly modify ASFV infection, suggesting that macropinocytosis does not represent the main entry route for ASFV. These results suggest a dynamin-dependent and clathrin-mediated endocytic pathway of ASFV entry for the cell types and viral strains analyzed.


Antiviral Research | 2011

Comparative inhibitory activity of the stilbenes resveratrol and oxyresveratrol on African swine fever virus replication

Inmaculada Galindo; Bruno Hernáez; Jose Berna; J. Fenoll; J.L. Cenis; José M. Escribano; Covadonga Alonso

Stilbenols are polyphenolic phytoalexins produced by plants in response to biotic or abiotic stress. These compounds have received much attention because of their significant biological effects. One of these is their antiviral action, which has previously been documented for two members of this class, namely resveratrol and oxyresveratrol. Here we tested the antiviral effect of these two compounds on African swine fever virus, the only member of the newly created family Asfarviridae and a serious limitation to porcine production worldwide. Our results show a potent, dose-dependent antiviral effect of resveratrol and oxyresveratrol in vitro. Interestingly, this antiviral activity was found for these synthetic compounds and also for oxyresveratrol extracted from new natural sources (mulberry twigs). The antiviral effect of these two drugs was demonstrated at concentrations that do not induce cytotoxicity in cultured cells. Moreover, these antivirals achieved a 98-100% reduction in viral titers. Both compounds allowed early protein synthesis but inhibited viral DNA replication, late viral protein synthesis and viral factory formation.


Journal of Virology | 2007

The MyD116 African Swine Fever Virus Homologue Interacts with the Catalytic Subunit of Protein Phosphatase 1 and Activates Its Phosphatase Activity

José Rivera; Charles C. Abrams; Bruno Hernáez; Alberto Alcázar; José M. Escribano; Linda K. Dixon; Covadonga Alonso

ABSTRACT The DP71L protein of African swine fever virus (ASFV) shares sequence similarity with the herpes simplex virus ICP34.5 protein over a C-terminal domain. We showed that the catalytic subunit of protein phosphatase 1 (PP1) interacts specifically with the ASFV DP71L protein in a yeast two-hybrid screen. The chimeric full-length DP71L protein, from ASFV strain Badajoz 71 (BA71V), fused to glutathione S-transferase (DP71L-GST) was expressed in Escherichia coli and shown to bind specifically to the PP1-α catalytic subunit expressed as a histidine fusion protein (6×His-PP1α) in E. coli. The functional effects of this interaction were investigated by measuring the levels of PP1 and PP2A in ASFV-infected Vero cells. This showed that infection with wild-type ASFV strain BA71V activated PP1 between two- and threefold over that of mock-infected cells. This activation did not occur in cells infected with the BA71V isolate in which the DP71L gene had been deleted, suggesting that expression of DP71L leads to PP1 activation. In contrast, no effect was observed on the activity of PP2A following ASFV infection. We showed that infection of cells with wild-type BA71V virus resulted in decreased phosphorylation of the α subunit of eukaryotic initiation factor 2 (eIF-2α). ICP34.5 recruits PP1 to dephosphorylate the α subunit of eukaryotic translational initiation factor 2 (also known as eIF-2α); possibly the ASFV DP71L protein has a similar function.


Cell Death and Disease | 2012

The ATF6 branch of unfolded protein response and apoptosis are activated to promote African swine fever virus infection

Inmaculada Galindo; Bruno Hernáez; Raquel Muñoz-Moreno; Miguel Ángel Cuesta-Geijo; Inmaculada Dalmau-Mena; Covadonga Alonso

African swine fever virus (ASFV) infection induces apoptosis in the infected cell; however, the consequences of this activation on virus replication have not been defined. In order to identify the role of apoptosis in ASFV infection, we analyzed caspase induction during the infection and the impact of caspase inhibition on viral production. Caspases 3, 9 and 12 were activated from 16 h post-infection, but not caspase 8. Indeed, caspase 3 activation during the early stages of the infection appeared to be crucial for efficient virus exit. In addition, the inhibition of membrane blebbing reduced the release of virus particles from the cell. ASFV uses the endoplasmic reticulum (ER) as a site of replication and this process can trigger ER stress and the unfolded protein response (UPR) of the host cell. In addition to caspase 12 activation, indicators of ER stress include the upregulation of the chaperones calnexin and calreticulin upon virus infection. Moreover, ASFV induces transcription factor 6 signaling pathway of the UPR, but not the protein kinase-like ER kinase or the inositol-requiring enzyme 1 pathways. Thus, the capacity of ASFV to regulate the UPR may prevent early apoptosis and ensure viral replication.


PLOS ONE | 2012

Endosomal Maturation, Rab7 GTPase and Phosphoinositides in African Swine Fever Virus Entry

Miguel Ángel Cuesta-Geijo; Inmaculada Galindo; Bruno Hernáez; José I. Quetglas; Inmaculada Dalmau-Mena; Covadonga Alonso

Here we analyzed the dependence of African swine fever virus (ASFV) infection on the integrity of the endosomal pathway. Using confocal immunofluorescence with antibodies against viral capsid proteins, we found colocalization of incoming viral particles with early endosomes (EE) during the first minutes of infection. Conversely, viral capsid protein was not detected in acidic late endosomal compartments, multivesicular bodies (MVBs), late endosomes (LEs) or lysosomes (LY). Using an antibody against a viral inner core protein, we found colocalization of viral cores with late compartments from 30 to 60 minutes postinfection. The absence of capsid protein staining in LEs and LYs suggested that virus desencapsidation would take place at the acid pH of these organelles. In fact, inhibitors of intraluminal acidification of endosomes caused retention of viral capsid staining virions in Rab7 expressing endosomes and more importantly, severely impaired subsequent viral protein production. Endosomal acidification in the first hour after virus entry was essential for successful infection but not thereafter. In addition, altering the balance of phosphoinositides (PIs) which are responsible of the maintenance of the endocytic pathway impaired ASFV infection. Early infection steps were dependent on the production of phosphatidylinositol 3-phosphate (PtdIns3P) which is involved in EE maturation and multivesicular body (MVB) biogenesis and on the interconversion of PtdIns3P to phosphatidylinositol 3, 5-biphosphate (PtdIns(3,5)P2). Likewise, GTPase Rab7 activity should remain intact, as well as processes related to LE compartment physiology, which are crucial during early infection. Our data demonstrate that the EE and LE compartments and the integrity of the endosomal maturation pathway orchestrated by Rab proteins and PIs play a central role during early stages of ASFV infection.


Virology | 2006

Visualization of the African swine fever virus infection in living cells by incorporation into the virus particle of green fluorescent protein-p54 membrane protein chimera.

Bruno Hernáez; José M. Escribano; Covadonga Alonso

Abstract Many stages of African swine fever virus infection have not yet been studied in detail. To track the behavior of African swine fever virus (ASFV) in the infected cells in real time, we produced an infectious recombinant ASFV (B54GFP-2) that expresses and incorporates into the virus particle a chimera of the p54 envelope protein fused to the enhanced green fluorescent protein (EGFP). The incorporation of the fusion protein into the virus particle was confirmed immunologically and it was determined that p54-EGFP was fully functional by confirmation that the recombinant virus made normal-sized plaques and presented similar growth curves to the wild-type virus. The tagged virus was visualized as individual fluorescent particles during the first stages of infection and allowed to visualize the infection progression in living cells through the viral life cycle by confocal microscopy. In this work, diverse potential applications of B54GFP-2 to study different aspects of ASFV infection are shown. By using this recombinant virus it was possible to determine the trajectory and speed of intracellular virus movement. Additionally, we have been able to visualize for first time the ASFV factory formation dynamics and the cytophatic effect of the virus in live infected cells. Finally, we have analyzed virus progression along the infection cycle and infected cell death as time-lapse animations.


Journal of Virology | 2012

Small Rho GTPases and Cholesterol Biosynthetic Pathway Intermediates in African Swine Fever Virus Infection

José I. Quetglas; Bruno Hernáez; Inmaculada Galindo; Raquel Muñoz-Moreno; Miguel Ángel Cuesta-Geijo; Covadonga Alonso

ABSTRACT The integrity of the cholesterol biosynthesis pathway is required for efficient African swine fever virus (ASFV) infection. Incorporation of prenyl groups into Rho GTPases plays a key role in several stages of ASFV infection, since both geranylgeranyl and farnesyl pyrophosphates are required at different infection steps. We found that Rho GTPase inhibition impaired virus morphogenesis and resulted in an abnormal viral factory size with the accumulation of envelope precursors and immature virions. Furthermore, abundant defective virions reached the plasma membrane, and filopodia formation in exocytosis was abrogated. Rac1 was activated at early ASFV infection stages, coincident with microtubule acetylation, a process that stabilizes microtubules for virus transport. Rac1 inhibition did not affect the viral entry step itself but impaired subsequent virus production. We found that specific Rac1 inhibition impaired viral induced microtubule acetylation and viral intracellular transport. These findings highlight that viral infection is the result of a carefully orchestrated modulation of Rho family GTPase activity within the host cell; this modulation results critical for virus morphogenesis and in turn, triggers cytoskeleton remodeling, such as microtubule stabilization for viral transport during early infection.


Virology | 2008

A179L, a viral Bcl-2 homologue, targets the core Bcl-2 apoptotic machinery and its upstream BH3 activators with selective binding restrictions for Bid and Noxa.

Inmaculada Galindo; Bruno Hernáez; Gema Dı́az-Gil; José M. Escribano; Covadonga Alonso

Several large DNA viruses encode Bcl-2 protein homologues involved in the regulation of the cellular apoptosis cascade. This regulation often involves the interaction of these viral proteins with diverse cellular Bcl-2 family members. We have identified the specific interactions of A179L, an African swine fever virus (ASFV) Bcl-2 homologue, with the active forms of the porcine BH3-only Bid protein (truncated Bid p13 and p15). Transient expression of ASFV A179L gene in Vero cells prevented apoptosis induced by these active forms of Bid protein. Interestingly, A179L protein was able to interact, also with the main core Bcl-2 proapoptotic proteins Bax and Bak, and with several BH3-only proteins with selective binding restrictions for full length Bid and Noxa. These results suggest a fine regulation for A179L action in the suppression of apoptosis in infected cells which is essential for efficient virus replication.

Collaboration


Dive into the Bruno Hernáez's collaboration.

Top Co-Authors

Avatar

Covadonga Alonso

Complutense University of Madrid

View shared research outputs
Top Co-Authors

Avatar

José M. Escribano

Technical University of Madrid

View shared research outputs
Top Co-Authors

Avatar

Inmaculada Galindo

Spanish National Research Council

View shared research outputs
Top Co-Authors

Avatar

Antonio Alcami

Spanish National Research Council

View shared research outputs
Top Co-Authors

Avatar

Raquel Muñoz-Moreno

Icahn School of Medicine at Mount Sinai

View shared research outputs
Top Co-Authors

Avatar

Linda K. Dixon

Institute for Animal Health

View shared research outputs
Top Co-Authors

Avatar

Alberto Rastrojo

Spanish National Research Council

View shared research outputs
Top Co-Authors

Avatar

Ignacio Rodríguez-Crespo

Complutense University of Madrid

View shared research outputs
Top Co-Authors

Avatar

Begoña Aguado

Spanish National Research Council

View shared research outputs
Top Co-Authors

Avatar

Berta Sáez

University of Zaragoza

View shared research outputs
Researchain Logo
Decentralizing Knowledge