Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Covadonga Alonso is active.

Publication


Featured researches published by Covadonga Alonso.


Circulation Research | 1998

3-Hydroxy-3-Methylglutaryl Coenzyme A Reductase and Isoprenylation Inhibitors Induce Apoptosis of Vascular Smooth Muscle Cells in Culture

Carlos Guijarro; Luis Miguel Blanco-Colio; Mónica Ortego; Covadonga Alonso; Alberto Ortiz; Juan José Plaza; Cristina Díaz; Gonzalo Hernández; Jesús Egido

Recent evidence suggests that apoptosis may be involved in the control of vascular smooth muscle cell (VSMC) number in atherosclerotic lesions. 3-Hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) reductase inhibitors have been reported to induce apoptosis in a variety of tumor cell lines. To evaluate whether these agents also induce apoptosis of VSMCs, cultured rat VSMCs were treated with increasing doses of atorvastatin in the presence of FBS as a survival factor. The presence of apoptosis was evaluated by morphological criteria, annexin V binding, and DNA fragmentation and quantified as the proportion of hypodiploid cells by flow cytometry. Atorvastatin induced apoptosis in a dose-dependent manner, an effect also seen with simvastatin and lovastatin, but not with the hydrophilic drug pravastatin. The proapoptotic effect of statins was seen only when the inhibition of acetate incorporation into sterols was >95% and was fully reversed by mevalonate, farnesyl pyrophosphate, and geranylgeranyl pyrophosphate but not by isopentenyl adenosine, ubiquinone, or squalene, suggesting a role for prenylated proteins in the regulation of VSMC apoptosis. To further assess the role of protein prenylation, VSMCs were exposed to the prenyl transferase inhibitors perillic acid and manumycin A. Both agents induced VSMC apoptosis as evaluated by the above-mentioned criteria. Finally, VSMC treatment with lipophilic statins was associated with decreased prenylation of p21-Rho B, further supporting the role of protein prenylation inhibition in statin-induced VSMC apoptosis. The present data suggest that interference with protein prenylation by HMG-CoA reductase inhibitors or other agents may provide new strategies for the prevention of neointimal thickening.


Journal of Virology | 2001

African Swine Fever Virus Protein p54 Interacts with the Microtubular Motor Complex through Direct Binding to Light-Chain Dynein

Covadonga Alonso; James E. Miskin; Bruno Hernáez; Patricia Fernandez-Zapatero; Lourdes Soto; Carmen Cantó; Ignacio Rodríguez-Crespo; Linda K. Dixon; José M. Escribano

ABSTRACT Dynein is a minus-end-directed microtubule-associated motor protein involved in cargo transport in the cytoplasm. African swine fever virus (ASFV), a large DNA virus, hijacks the microtubule motor complex cellular transport machinery during virus infection of the cell through direct binding of virus protein p54 to the light chain of cytoplasmic dynein (LC8). Interaction of p54 and LC8 occurs both in vitro and in cells, and the two proteins colocalize at the microtubular organizing center during viral infection. p50/dynamitin, a dominant-negative inhibitor of dynein-dynactin function, impeded ASFV infection, suggesting an essential role for dynein during virus infection. A 13-amino-acid domain of p54 was sufficient for binding to LC8, an SQT motif within this domain being critical for this binding. Direct binding of a viral structural protein to LC8, a small molecule of the dynein motor complex, could constitute a molecular mechanism for microtubule-mediated virus transport.


ACS Nano | 2012

Monosaccharides versus PEG-Functionalized NPs: Influence in the Cellular Uptake

María Moros; Bruno Hernáez; Elina Garet; Jorge T. Dias; Berta Sáez; Valeria Grazú; África González-Fernández; Covadonga Alonso; Jesús M. de la Fuente

Magnetic nanoparticles (NPs) hold great promise for biomedical applications. The core composition and small size of these particles produce superparamagnetic behavior, thus facilitating their use in magnetic resonance imaging and magnetically induced therapeutic hyperthermia. However, the development and control of safe in vivo applications for NPs call for the study of cell-NP interactions and cell viability. Furthermore, as for most biotechnological applications, it is desirable to prevent unspecific cell internalization of these particles. It is also crucial to understand how the surface composition of the NPs affects their internalization capacity. Here, through accurate control over unspecific protein adsorption, size distribution, grafting density, and an extensive physicochemical characterization, we correlated the cytotoxicity and cellular uptake mechanism of 6 nm magnetic NPs coated with several types and various densities of biomolecules, such as glucose, galactose, and poly(ethylene glycol). We found that the density of the grafted molecule was crucial to prevent unspecific uptake of NPs by Vero cells. Surprisingly, the glucose-coated NPs described here showed cellular uptake as a result of lipid raft instead of clathrin-mediated cellular internalization. Moreover, these glucose-functionalized NPs could be one of the first examples of NPs being endocytosed by caveolae that finally end up in the lysosomes. These results reinforce the use of simple carbohydrates as an alternative to PEG molecules for NPs functionalization when cellular uptake is required.


Journal of Virology | 2010

Dynamin- and Clathrin-Dependent Endocytosis in African Swine Fever Virus Entry

Bruno Hernáez; Covadonga Alonso

ABSTRACT African swine fever virus (ASFV) is a large DNA virus that enters host cells after receptor-mediated endocytosis and depends on acidic cellular compartments for productive infection. The exact cellular mechanism, however, is largely unknown. In order to dissect ASFV entry, we have analyzed the major endocytic routes using specific inhibitors and dominant negative mutants and analyzed the consequences for ASFV entry into host cells. Our results indicate that ASFV entry into host cells takes place by clathrin-mediated endocytosis which requires dynamin GTPase activity. Also, the clathrin-coated pit component Eps15 was identified as a relevant cellular factor during infection. The presence of cholesterol in cellular membranes, but not lipid rafts or caveolae, was found to be essential for a productive ASFV infection. In contrast, inhibitors of the Na+/H+ ion channels and actin polymerization inhibition did not significantly modify ASFV infection, suggesting that macropinocytosis does not represent the main entry route for ASFV. These results suggest a dynamin-dependent and clathrin-mediated endocytic pathway of ASFV entry for the cell types and viral strains analyzed.


FEBS Letters | 2003

Recognition of novel viral sequences that associate with the dynein light chain LC8 identified through a pepscan technique

Mónica Martínez-Moreno; Inmaculada Navarro-Lérida; Fernando Roncal; Juan Pablo Albar; Covadonga Alonso; Francisco Gavilanes; Ignacio Rodríguez-Crespo

Recent data from multiple laboratories indicate that upon infection, many different families of viruses hijack the dynein motor machinery and become transported in a retrograde manner towards the cell nucleus. In certain cases, one of the dynein light chains, LC8, is involved in this interaction. Using a library of overlapping dodecapeptides synthesized on a cellulose membrane (pepscan technique) we have analyzed the interaction of the dynein light chain LC8 with 17 polypeptides of viral origin. We demonstrate the strong binding of two herpesvirus polypeptides, the human adenovirus protease, vaccinia virus polymerase, human papillomavirus E4 protein, yam mosaic virus polyprotein, human respiratory syncytial virus attachment glycoprotein, human coxsackievirus capsid protein and the product of the AMV179 gene of an insect poxvirus to LC8. Our data corroborate the manipulation of the dynein macromolecular complex of the cell during viral infection and point towards the light chain LC8 as one of the most frequently used targets of virus manipulation.


Archives of Virology | 1998

Programmed cell death in the pathogenesis of rabbit hemorrhagic disease

Covadonga Alonso; J.M. Oviedo; José M. Martín-Alonso; E. Díaz; J. A. Boga; Francisco Parra

SummaryRabbit hemorrhagic disease is a rapidly lethal infection caused by a calicivirus, characterized by acute liver damage and disseminated intravascular coagulation (DIC). Following morphological criteria and using a specific in situ labeling technique, we have found that liver cell death induced upon infection is due to apoptosis, and that programmed cell death is a constant feature in rabbits experimentally infected with RHDV. The process affected mainly hepatocytes, but also macrophages and endothelial cells presented morphologic hallmarks of apoptosis, expressing all these cell types viral antigens as determined by immunohistochemistry. The occurrence of programmed cell death was correlated with the appearance of the RHDV induced pathology in tissues by DNA fragmentation detection in situ. Hepatocyte apoptosis produced extensive parenchymal destruction causing a lethal, acute fulminant hepatitis that is characteristic of RHD. Apoptosis of intravascular monocytes and endothelial cells was observed together with fibrin thrombi in blood vessels. Since apoptotic cells are known sites of enhanced procoagulant activity, apoptosis of these cell populations might constitute a first step in the pathogenesis of DIC and a common pathway to other viral hemorrhagic fevers. In conclusion, apoptosis in RHD may be determinant in the development of the pathogenesis of this disease.


Journal of General Virology | 1996

Apoptosis: a mechanism of cell killing and lymphoid organ impairment during acute African swine fever virus infection.

Fernando Ramiro-Ibáñez; Angel Ortega; Alejandro Brun; José M. Escribano; Covadonga Alonso

Induction of programmed cell death has been described during infection with many different viruses. We have investigated the influence of African swine fever virus (ASFV) on apoptosis of different cell populations during in vitro and in vivo infection. We observed apoptosis in ASFV-infected monocyte/macrophage and peripheral blood mononuclear cell cultures. Apoptosis was demonstrated in these cells by DNA fragmentation, DNA staining and DNA-associated histone fraction detection assays. Flow cytometry analysis of infected cultures also showed morphological and functional alterations, including changes in the cell cycle and percentage of cell fractions stained with propidium iodide. After in vivo infection with three different virulent strains of ASFV, apoptosis of infected cells from the mononuclear phagocytic system and closely related elements from different tissues was observed. Additionally, infected pigs showed an intense degree of apoptosis of lymphocytes, which are not infected by the virus. In lymph nodes and other lymphoid organs, broad bands of apoptotic cells presented typical nuclear changes under light microscopy. The occurrence of DNA fragmentation was confirmed in these tissues using terminal deoxynucleotidyl transferase-mediated dUTP nick end labelling. These findings, together with the pathological observations in infected pigs of a depletion in cell populations in lymphoid organs, suggest that virus interference with programmed cell death plays a central role in pathogenesis of this disease, being responsible for lymphoid organ impairment in acute ASFV infection.


Journal of Clinical Microbiology | 2006

Optimization and Validation of Recombinant Serological Tests for African Swine Fever Diagnosis Based on Detection of the p30 Protein Produced in Trichoplusia ni Larvae

D. M. Pérez-Filgueira; F. González-Camacho; C. Gallardo; P. Resino-Talaván; E. Blanco; E. Gómez-Casado; Covadonga Alonso; José M. Escribano

ABSTRACT We describe the validation of an enzyme-linked immunosorbent assay (ELISA) and confirmatory immunoblotting assays based on a recombinant p30 protein (p30r) produced in insect larvae using a baculovirus vector. Such validation included the following: (i) the scaling up and standardization of p30r production and the associated immunoassays, (ii) a broad immunological analysis using a large number of samples (a total of 672) from Spain and different African locations, and (iii) the detection of the ASF virus (ASFV)-antibody responses at different times after experimental infection. Yields of p30r reached up to 15% of the total protein recovered from the infected larvae at 3 days postinfection. Serological analysis of samples collected in Spain revealed that the p30r-based ELISA presented similar sensitivity to and higher specificity than the conventional Office International des Epizooties-approved ASFV ELISA. Moreover, the p30r ELISA was more sensitive than the conventional ELISA test in detecting ASFV-specific antibodies in experimentally infected animals at early times postinfection. Both the recombinant and conventional ELISAs presented variable rates of sensitivity and specificity with African samples, apparently related to their geographical origin. Comparative analyses performed on the sequences, predicted structures, and antigenicities of p30 proteins from different Spanish and African isolates suggested that variability among isolates might correlate with changes in antigenicity, thus affecting detection by the p30r ELISA. Our estimations indicate that more than 40,000 ELISA determinations and 2,000 confirmatory immunoblotting tests can be performed with the p30r protein obtained from a single infected larva, making this a feasible and inexpensive strategy for production of serological tests with application in developing countries.


American Journal of Pathology | 2004

Persistent Proteinuria Up-Regulates Angiotensin II Type 2 Receptor and Induces Apoptosis in Proximal Tubular Cells

Nuria Tejera; Dulcenombre Gómez-Garre; Alberto Lázaro; Julio Gallego-Delgado; Covadonga Alonso; Julia Blanco; Alberto Ortiz; Jesús Egido

Apoptosis is implicated in the progressive cell loss and fibrosis both at glomerular and tubulointerstitial level. In this study, we examined the potential mechanisms by which persistent proteinuria (protein-overload model) could induce apoptosis. After uninephrectomy (UNX), Wistar rats received daily injections of 0.5 g of bovine serum albumin (BSA)/100 g body weight or saline. Both at day 8 and day 28, rats receiving BSA had proteinuria and renal lesions characterized by tubular atrophy and/or dilation and mononuclear cell infiltration. In relation to control-UNX rats, renal cortex of nephritic rats showed an increment in AT2 mRNA (reverse transcriptase-polymerase chain reaction) and protein (Western blot) expression. In both groups, AT2 receptor immunostaining was mainly localized in proximal tubular cells. Rats with persistent proteinuria showed a significantly increased number of terminal dUTP nick-end labeling positive apoptotic cells compared with UNX-controls, both in glomeruli and tubulointerstitium. Double staining for apoptosis and AT2 receptor showed that most terminal dUTP nick-end labeling positive cells were found in tubules expressing AT2 receptor. Using an antibody that recognizes the active form caspase-3, we observed an increment in caspase-3 activation in rats receiving BSA with respect to those receiving saline. Rats with persistent proteinuria showed a diminution in the phosphorylation of Bcl-2 with respect to UNX-controls both at day 8 and day 28. By contrast, no changes were observed either in the Bax or in the Bcl-2 protein levels. The administration of BSA to UNX rats induced a diminution in the phosphorylation of ERK with respect to UNX-control at all times studied. The changes observed in ERK activities took place without alterations of ERK1/2 protein levels. In summary, our data suggest that persistent proteinuria causes apoptosis in tubular cells through the activation of AT2 receptor, which can, in turn, inhibit MAP kinase (ERK1/2) activation and Bcl-2 phosphorylation.


Antiviral Research | 2011

Comparative inhibitory activity of the stilbenes resveratrol and oxyresveratrol on African swine fever virus replication

Inmaculada Galindo; Bruno Hernáez; Jose Berna; J. Fenoll; J.L. Cenis; José M. Escribano; Covadonga Alonso

Stilbenols are polyphenolic phytoalexins produced by plants in response to biotic or abiotic stress. These compounds have received much attention because of their significant biological effects. One of these is their antiviral action, which has previously been documented for two members of this class, namely resveratrol and oxyresveratrol. Here we tested the antiviral effect of these two compounds on African swine fever virus, the only member of the newly created family Asfarviridae and a serious limitation to porcine production worldwide. Our results show a potent, dose-dependent antiviral effect of resveratrol and oxyresveratrol in vitro. Interestingly, this antiviral activity was found for these synthetic compounds and also for oxyresveratrol extracted from new natural sources (mulberry twigs). The antiviral effect of these two drugs was demonstrated at concentrations that do not induce cytotoxicity in cultured cells. Moreover, these antivirals achieved a 98-100% reduction in viral titers. Both compounds allowed early protein synthesis but inhibited viral DNA replication, late viral protein synthesis and viral factory formation.

Collaboration


Dive into the Covadonga Alonso's collaboration.

Top Co-Authors

Avatar

José M. Escribano

Technical University of Madrid

View shared research outputs
Top Co-Authors

Avatar

Inmaculada Galindo

Spanish National Research Council

View shared research outputs
Top Co-Authors

Avatar

Bruno Hernáez

Spanish National Research Council

View shared research outputs
Top Co-Authors

Avatar

Fernando Rodriguez

Autonomous University of Barcelona

View shared research outputs
Top Co-Authors

Avatar

Raquel Muñoz-Moreno

Icahn School of Medicine at Mount Sinai

View shared research outputs
Top Co-Authors

Avatar

Fernando Ramiro-Ibáñez

Complutense University of Madrid

View shared research outputs
Top Co-Authors

Avatar

Paulino Gómez-Puertas

Spanish National Research Council

View shared research outputs
Top Co-Authors

Avatar

Alejandro Brun

United States Department of Agriculture

View shared research outputs
Top Co-Authors

Avatar

Linda K. Dixon

Institute for Animal Health

View shared research outputs
Top Co-Authors

Avatar

Jesús Egido

Autonomous University of Madrid

View shared research outputs
Researchain Logo
Decentralizing Knowledge