Bruno Quendera
University of Coimbra
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Bruno Quendera.
Journal of Cerebral Blood Flow and Metabolism | 2015
João V. Duarte; João Pereira; Bruno Quendera; Miguel Raimundo; Carolina Moreno; Leonor Gomes; Francisco Carrilho; Miguel Castelo-Branco
Type 2 diabetes (T2DM) patients develop vascular complications and have increased risk for neurophysiological impairment. Vascular pathophysiology may alter the blood flow regulation in cerebral microvasculature, affecting neurovascular coupling. Reduced fMRI signal can result from decreased neuronal activation or disrupted neurovascular coupling. The uncertainty about pathophysiological mechanisms (neurodegenerative, vascular, or both) underlying brain function impairments remains. In this cross-sectional study, we investigated if the hemodynamic response function (HRF) in lesion-free brains of patients is altered by measuring BOLD (Blood Oxygenation Level-Dependent) response to visual motion stimuli. We used a standard block design to examine the BOLD response and an event-related deconvolution approach. Importantly, the latter allowed for the first time to directly extract the true shape of HRF without any assumption and probe neurovascular coupling, using performance-matched stimuli. We discovered a change in HRF in early stages of diabetes. T2DM patients show significantly different fMRI response profiles. Our visual paradigm therefore demonstrated impaired neurovascular coupling in intact brain tissue. This implies that functional studies in T2DM require the definition of HRF, only achievable with deconvolution in event-related experiments. Further investigation of the mechanisms underlying impaired neurovascular coupling is needed to understand and potentially prevent the progression of brain function decrements in diabetes.
European Journal of Ophthalmology | 2015
João Pedro Marques; Andreia Martins Rosa; Bruno Quendera; Fátima Silva; Joaquim Mira; Conceição Lobo; Miguel Castelo-Branco; Joaquim Murta
Purpose To quantitatively evaluate visual function 12 months after bilateral implantation of the Physiol FineVision® trifocal intraocular lens (IOL) and to compare these results with those obtained in the first postoperative month. Methods In this prospective case series, 20 eyes of 10 consecutive patients were included. Monocular and binocular, uncorrected and corrected visual acuities (distance, near, and intermediate) were measured. Metrovision® was used to test contrast sensitivity under static and dynamic conditions, both in photopic and low-mesopic settings. The same software was used for pupillometry and glare evaluation. Motion, achromatic, and chromatic contrast discrimination were tested using 2 innovative psychophysical tests. A complete ophthalmologic examination was performed preoperatively and at 1, 3, 6, and 12 months postoperatively. Psychophysical tests were performed 1 month after surgery and repeated 12 months postoperatively. Results Final distance uncorrected visual acuity (VA) was 0.00 ± 0.08 and distance corrected VA was 0.00 ± 0.05 logMAR. Distance corrected near VA was 0.00 ± 0.09 and distance corrected intermediate VA was 0.00 ± 0.06 log-MAR. Glare testing, pupillometry, contrast sensitivity, motion, and chromatic and achromatic contrast discrimination did not differ significantly between the first and last visit (p>0.05) or when compared to an age-matched control group (p>0.05). Conclusions The Physiol FineVision® trifocal IOL provided satisfactory full range of vision and quality of vision parameters 12 months after surgery. Visual acuity and psychophysical tests did not vary significantly between the first and last visit.
NeuroImage: Clinical | 2017
Sónia Ferreira; Andreia Pereira; Bruno Quendera; Aldina Reis; Eduardo Silva; Miguel Castelo-Branco
Human studies addressing the long-term effects of peripheral retinal degeneration on visual cortical function and structure are scarce. Here we investigated this question in patients with Retinitis Pigmentosa (RP), a genetic condition leading to peripheral visual degeneration. We acquired functional and anatomical magnetic resonance data from thirteen patients with different levels of visual loss and twenty-two healthy participants to study primary (V1) visual cortical retinotopic remapping and cortical thickness. We identified systematic visual field remapping in the absence of structural changes in the primary visual cortex of RP patients. Remapping consisted in a retinotopic eccentricity shift of central retinal inputs to more peripheral locations in V1. Importantly, this was associated with changes in visual experience, as assessed by the extent of the visual loss, with more constricted visual fields resulting in larger remapping. This pattern of remapping is consistent with expansion or shifting of neuronal receptive fields into the cortical regions with reduced retinal input. These data provide evidence for functional changes in V1 that are dependent on the magnitude of peripheral visual loss in RP, which may be explained by rapid cortical adaptation mechanisms or long-term cortical reorganization. This study highlights the importance of analyzing the retinal determinants of brain functional and structural alterations for future visual restoration approaches.
Journal of Neuroendocrinology | 2018
Sulaiman I. Abuhaiba; M. Cordeiro; A. Amorim; Â. Cruz; Bruno Quendera; Carlos Ferreira; L. Ribeiro; Rui Bernardes; Miguel Castelo-Branco
Blood‐brain barrier (BBB) permeability in type 2 diabetic patients has been previously shown to be altered in certain brain regions such as the basal ganglia and the hippocampus. Because of the histological and functional similarities between the BBB) and the blood‐retinal barrier (BRB), we aimed to investigate how the permeability of both barriers predicts visual outcome. We included 2 control groups (acute unilateral stroke patients, n = 9; type 2 diabetics without BRB leakage n = 10) and a case study group of type 2 diabetics with established BRB leakage (n = 17). We evaluated sex, age, disease duration, metabolic impairment, retinopathy grade and BBB permeability as predictors of visual acuity at baseline, 12 and 24 months in the type 2 diabetics without BRB leakage group and the case study group. We have also explored differences in BBB permeability in the occipital lobe and frontal lobe in the 3 different groups. Ktrans (volume transfer coefficient) and Vp (fractional plasma volume) were estimated. The BBB permeability parameter Vp was higher in the case study group compared to the unaffected hemisphere of the stroke patient control group, suggesting vascular dynamics were changed in the occipital lobe of type 2 diabetics with established BRB leakage. These patients showed a significant correlation between glycated hemoglobin (HbA1C) levels and occipital and frontal Ktrans. We report for the first time that occipital BBB permeability is an independent predictor of visual acuity at baseline, as well as at 12 and 24 months, in type 2 diabetics with established BRB leakage. Our results suggest that occipital BBB permeability might be an independent biomarker for visual impairment in patients with established BRB leakage.
Graefes Archive for Clinical and Experimental Ophthalmology | 2018
Otília C. d’Almeida; Inês R. Violante; Bruno Quendera; Miguel Castelo-Branco
PurposeIt has remained a mystery why some genetic mitochondrial disorders affect predominantly specific cell types such as the retinal ganglion cell. This is particularly intriguing concerning retinal and cortical function since they are tightly linked in health and disease. Autosomal dominant optic neuropathy (ADOA) is a mitochondrial disease that affects the ganglion cell. However, it is unknown whether alterations are also present in the visual cortex, namely in excitation/inhibition balance.MethodsIn this study, we performed in vivo structural and biochemical proton magnetic resonance imaging in 14 ADOA and 11 age-matched control participants focusing on the visual cortex, with the aim of establishing whether in this genetically determined disease an independent cortical neurochemical phenotype could be established irrespective of a putative structural phenotype. Cortical thickness of anatomically defined visual areas was estimated, and a voxel-based morphometry approach was used to assess occipital volumetric changes in ADOA. Neurochemical measurements were focused on γ-aminobutyric acid (GABA) and glutamate, as indicators of the local excitatory/inhibitory balance.ResultsWe found evidence for reduced visual cortical GABA and preserved glutamate concentrations in the absence of cortical or subcortical atrophy. These changes in GABA levels were explained by neither structural nor functional measures of visual loss, suggesting a developmental origin.ConclusionsThese results suggest that mitochondrial disorders that were previously believed to only affect retinal function may also affect cortical physiology, especially the GABAergic system, suggesting reduced brain inhibition vs. excitation. This GABA phenotype, independent of sensory loss or cortical atrophy and in the presence of preserved glutamate levels, suggests a neurochemical developmental change at the cortical level, leading to a pathophysiological excitation/inhibition imbalance.
Scientific Reports | 2017
Ana Rita Machado; Andreia Carvalho Pereira; Fábio Ferreira; Sónia Ferreira; Bruno Quendera; Eduardo Silva; Miguel Castelo-Branco
Retinitis Pigmentosa is a group of hereditary retinal dystrophy disorders associated with progressive peripheral visual field loss. The impact of this retinal loss in cortical gray matter volume has not been addressed before in Retinitis Pigmentosa patients with low vision. Voxel-based morphometry was applied to study whole brain gray matter volume changes in 27 Retinitis Pigmentosa patients with partially preserved vision and 38 age- and gender-matched normally sighted controls to determine whether peripheral visual loss can lead to changes in gray matter volume. We found significant reductions in gray matter volume that were restricted to the occipital cortex of patients. The anteromedial pattern of reduced gray matter volume in visual primary and association cortices was significantly correlated with the extent of the peripheral visual field deficit in this cohort. Moreover, this pattern was found to be associated with the extent of visual field loss. In summary, we found specific visual cortical gray matter loss in Retinitis Pigmentosa patients associated with their visual function profile. The spatial pattern of gray matter loss is consistent with disuse-driven neuronal atrophy which may have clinical implications for disease management, including prosthetic restoration strategies.
PLOS ONE | 2016
Bárbara Oliveiros; Mafalda Sanches; Bruno Quendera; Bruno Graça; Daniela Guelho; Leonor Gomes; Francisco Carrilho; Filipe Caseiro-Alves; Miguel Castelo-Branco
Cardiovascular disease and diabetes represent a major public health concern. The former is the most frequent cause of death and disability in patients with type 2 diabetes, where left ventricular dysfunction is highly prevalent. Moreover, diabetic retinopathy is becoming a dominant cause of visual impairment and blindness. The complex relation between cardiovascular disease and diabetic retinopathy as a function of ageing, obesity and hypertension remains to be clarified. Here, we investigated such relations in patients with diabetes type 2, in subjects with neither overt heart disease nor advanced proliferative diabetic retinopathy. We studied 47 patients and 50 controls, aged between 45 and 65 years, equally distributed according to gender. From the 36 measures regarding visual structure and function, and the 11 measures concerning left ventricle function, we performed data reduction to obtain eight new derived variables, seven of which related to the eye, adjusted for age, gender, body mass index and high blood pressure using both discriminant analysis (DA) and logistic regression (LR). We found moderate to strong correlation between left ventricle function and the eye constructs: minimum correlation was found for psychophysical motion thresholds (DA: 0.734; LR: 0.666), while the maximum correlation was achieved with structural volume density in the neural retina (DA: 0.786; LR: 0.788). Controlling the effect of pairwise correlated visual constructs, the parameters that were most correlated to left ventricle function were volume density in retina and thickness of the retinal nerve fiber layers (adjusted multiple R2 is 0.819 and 0.730 for DA and LR), with additional contribution of psychophysical loss in achromatic contrast discrimination. We conclude that visual structural and functional changes in type 2 diabetes are related to heart dysfunction, when the effects of clinical, demographic and associated risk factors are taken into account, revealing a genuine relation between cardiac and retinal diabetic phenotypes.
Metabolic Brain Disease | 2017
Mafalda Sanches; Sulaiman I. Abuhaiba; Otília C. d’Almeida; Bruno Quendera; Leonor Gomes; Carolina Moreno; Daniela Guelho; Miguel Castelo-Branco
Investigative Ophthalmology & Visual Science | 2014
Sónia Ferreira; Andreia Pereira; Bruno Quendera; Catarina Mateus; Aldina Reis; Maria Rosário Almeida; Eduardo A. Silva; Miguel Castelo-Branco
Investigative Ophthalmology & Visual Science | 2014
Miguel Castelo-Branco; Bruno Quendera; Mohammed Al-Rawi; Sónia Ferreira