Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Bruno Sevá Pessôa is active.

Publication


Featured researches published by Bruno Sevá Pessôa.


Nature Reviews Nephrology | 2013

Key developments in renin–angiotensin–aldosterone system inhibition

Bruno Sevá Pessôa; Nils van der Lubbe; Koen Verdonk; Anton J.M. Roks; Ewout J. Hoorn; A.H. Jan Danser

The renin–angiotensin–aldosterone system (RAAS) was initially thought to be fairly simple. However, this idea has been challenged following the development of RAAS blockers, including renin inhibitors, angiotensin-converting-enzyme (ACE) inhibitors, type 1 angiotensin II (AT1)-receptor blockers and mineralocorticoid-receptor antagonists. Consequently, new RAAS components and pathways that might contribute to the effectiveness of these drugs and/or their adverse effects have been identified. For example, an increase in renin levels during RAAS blockade might result in harmful effects via stimulation of the prorenin receptor (PRR), and prorenin—the inactive precursor of renin—might gain enzymatic activity on PRR binding. The increase in angiotensin II levels that occurs during AT1-receptor blockade might result in beneficial effects via stimulation of type 2 angiotensin II receptors. Moreover, angiotensin 1–7 levels increase during ACE inhibition and AT1-receptor blockade, resulting in Mas receptor activation and the induction of cardioprotective and renoprotective effects, including stimulation of tissue repair by stem cells. Finally, a role of angiotensin II in sodium and potassium handling in the distal nephron has been identified. This finding is likely to have important implications for understanding the effects of RAAS inhibition on whole body sodium and potassium balance.


Clinical Science | 2012

The renin-angiotensin system, bone marrow and progenitor cells

Matej Durik; Bruno Sevá Pessôa; Anton J.M. Roks

Modulation of the RAS (renin-angiotensin system), in particular of the function of the hormones AngII (angiotensin II) and Ang-(1-7) [angiotensin-(1-7)], is an important target for pharmacotherapy in the cardiovascular system. In the classical view, such modulation affects cardiovascular cells to decrease hypertrophy, fibrosis and endothelial dysfunction, and improves diuresis. In this view, excessive stimulation of AT(1) receptors (AngII type 1 receptors) fulfils a detrimental role, as it promotes cardiovascular pathogenesis, and this is opposed by stimulation of the AT(2) receptor (angiotensin II type 2 receptor) and the Ang-(1-7) receptor encoded by the Mas proto-oncogene. In recent years, this view has been broadened with the observation that the RAS regulates bone marrow stromal cells and stem cells, thus involving haematopoiesis and tissue regeneration by progenitor cells. This change of paradigm has enlarged the field of perspectives for therapeutic application of existing as well as newly developed medicines that alter angiotensin signalling, which now stretches beyond cardiovascular therapy. In the present article, we review the role of AngII and Ang-(1-7) and their respective receptors in haematopoietic and mesenchymal stem cells, and discuss possible pharmacotherapeutical implications.


Hypertension | 2014

Multiple Ascending Dose Study With the New Renin Inhibitor VTP-27999 Nephrocentric Consequences of Too Much Renin Inhibition

Joanna Balcarek; Bruno Sevá Pessôa; Catherine Bryson; Michel Azizi; Joël Ménard; Ingrid M. Garrelds; Gerard M. McGeehan; Richard A. Reeves; Sue G. Griffith; A.H. Jan Danser; Richard Gregg

This study compared the pharmacodynamic/pharmacokinetic profile of the new renin inhibitor VTP-27999 in salt-depleted healthy volunteers, administered once daily (75, 150, 300, and 600 mg) for 10 days, versus placebo and 300 mg aliskiren. VTP-27999 was well tolerated with no significant safety issues. It was rapidly absorbed, attaining maximum plasma concentrations at 1 to 4 hours after dosing, with a terminal half-life of 24 to 30 hours. Plasma renin activity remained suppressed during the 24-hour dosing interval at all doses. VTP-27999 administration resulted in a dose-dependent induction of renin, increasing the concentration of plasma renin maximally 350-fold. This induction was greater than with aliskiren, indicating greater intrarenal renin inhibition. VTP-27999 decreased plasma angiotensin II and aldosterone. At 24 hours and later time points after dosing on day 10 in the 600-mg group, angiotensin II and aldosterone levels were increased, and plasma renin activity was also increased at 48 and 72 hours, compared with baseline. VTP-27999 decreased urinary aldosterone excretion versus placebo on day 1. On day 10, urinary aldosterone excretion was higher in the 300- and 600-mg VTP-27999 dose groups compared with baseline. VTP-27999 decreased blood pressure to the same degree as aliskiren. In conclusion, excessive intrarenal renin inhibition, obtained at VTP-27999 doses of 300 mg and higher, is accompanied by plasma renin rises, that after stopping drug intake, exceed the capacity of extrarenal VTP-27999 to block fully the enzymatic reaction. This results in significant rises of angiotensin II and aldosterone. Therefore, renin inhibition has an upper limit. # Novelty and Significance {#article-title-16}This study compared the pharmacodynamic/pharmacokinetic profile of the new renin inhibitor VTP-27999 in salt-depleted healthy volunteers, administered once daily (75, 150, 300, and 600 mg) for 10 days, versus placebo and 300 mg aliskiren. VTP-27999 was well tolerated with no significant safety issues. It was rapidly absorbed, attaining maximum plasma concentrations at 1 to 4 hours after dosing, with a terminal half-life of 24 to 30 hours. Plasma renin activity remained suppressed during the 24-hour dosing interval at all doses. VTP-27999 administration resulted in a dose-dependent induction of renin, increasing the concentration of plasma renin maximally 350-fold. This induction was greater than with aliskiren, indicating greater intrarenal renin inhibition. VTP-27999 decreased plasma angiotensin II and aldosterone. At 24 hours and later time points after dosing on day 10 in the 600-mg group, angiotensin II and aldosterone levels were increased, and plasma renin activity was also increased at 48 and 72 hours, compared with baseline. VTP-27999 decreased urinary aldosterone excretion versus placebo on day 1. On day 10, urinary aldosterone excretion was higher in the 300- and 600-mg VTP-27999 dose groups compared with baseline. VTP-27999 decreased blood pressure to the same degree as aliskiren. In conclusion, excessive intrarenal renin inhibition, obtained at VTP-27999 doses of 300 mg and higher, is accompanied by plasma renin rises, that after stopping drug intake, exceed the capacity of extrarenal VTP-27999 to block fully the enzymatic reaction. This results in significant rises of angiotensin II and aldosterone. Therefore, renin inhibition has an upper limit.


Hypertension | 2015

Angiotensin II Type 2 Receptor– and Acetylcholine-Mediated Relaxation Essential Contribution of Female Sex Hormones and Chromosomes

Bruno Sevá Pessôa; Denise E. Slump; Khatera Ibrahimi; Aldo Grefhorst; Richard van Veghel; Ingrid M. Garrelds; Anton J.M. Roks; Steven A. Kushner; A.H. Jan Danser; Joep H.M. van Esch

Angiotensin-induced vasodilation, involving type 2 receptor (AT2R)–induced generation of nitric oxide (NO; by endothelial NO synthase) and endothelium-derived hyperpolarizing factors, may be limited to women. To distinguish the contribution of female sex hormones and chromosomes to AT2R function and endothelium-derived hyperpolarizing factor–mediated vasodilation, we made use of the four-core genotype model, where the testis-determining Sry gene has been deleted (Y−) from the Y chromosome, allowing XY− mice to develop a female gonadal phenotype. Simultaneously, by incorporating the Sry gene onto an autosome, XY−Sry and XXSry transgenic mice develop into gonadal male mice. Four-core genotype mice underwent a sham or gonadectomy (GDX) operation, and after 8 weeks, iliac arteries were collected to assess vascular function. XY−Sry male mice responded more strongly to angiotensin than XX female mice, and the AT2R antagonist PD123319 revealed that this was because of a dilator AT2R-mediated effect occurring exclusively in XX female mice. The latter could not be demonstrated in XXSry male and XY− female mice nor in XX female mice after GDX, suggesting that it depends on both sex hormones and chromosomes. Indeed, treating C57bl/6 GDX male mice with estrogen could not restore angiotensin-mediated, AT2R-dependent relaxation. To block acetylcholine-induced relaxation of iliac arteries obtained from four-core genotype XX mice, both endothelial NO synthase and endothelium-derived hyperpolarizing factor inhibition were required, whereas in four-core genotype XY animals, endothelial NO synthase inhibition alone was sufficient. These findings were independent of gonadal sex and unaltered after GDX. In conclusion, AT2R-induced relaxation requires both estrogen and the XX chromosome sex complement, whereas only the latter is required for endothelium-derived hyperpolarizing factors.Angiotensin-induced vasodilation, involving type 2 receptor (AT2R)–induced generation of nitric oxide (NO; by endothelial NO synthase) and endothelium-derived hyperpolarizing factors, may be limited to women. To distinguish the contribution of female sex hormones and chromosomes to AT2R function and endothelium-derived hyperpolarizing factor–mediated vasodilation, we made use of the four-core genotype model, where the testis-determining Sry gene has been deleted (Y−) from the Y chromosome, allowing XY− mice to develop a female gonadal phenotype. Simultaneously, by incorporating the Sry gene onto an autosome, XY− Sry and XX Sry transgenic mice develop into gonadal male mice. Four-core genotype mice underwent a sham or gonadectomy (GDX) operation, and after 8 weeks, iliac arteries were collected to assess vascular function. XY− Sry male mice responded more strongly to angiotensin than XX female mice, and the AT2R antagonist PD123319 revealed that this was because of a dilator AT2R-mediated effect occurring exclusively in XX female mice. The latter could not be demonstrated in XX Sry male and XY− female mice nor in XX female mice after GDX, suggesting that it depends on both sex hormones and chromosomes. Indeed, treating C57bl/6 GDX male mice with estrogen could not restore angiotensin-mediated, AT2R-dependent relaxation. To block acetylcholine-induced relaxation of iliac arteries obtained from four-core genotype XX mice, both endothelial NO synthase and endothelium-derived hyperpolarizing factor inhibition were required, whereas in four-core genotype XY animals, endothelial NO synthase inhibition alone was sufficient. These findings were independent of gonadal sex and unaltered after GDX. In conclusion, AT2R-induced relaxation requires both estrogen and the XX chromosome sex complement, whereas only the latter is required for endothelium-derived hyperpolarizing factors. # Novelty and Significance {#article-title-34}


Hypertension | 2015

Angiotensin II Type 2 Receptor– and Acetylcholine-Mediated RelaxationNovelty and Significance: Essential Contribution of Female Sex Hormones and Chromosomes

Bruno Sevá Pessôa; Denise E. Slump; Khatera Ibrahimi; Aldo Grefhorst; Richard van Veghel; Ingrid M. Garrelds; Anton J.M. Roks; Steven A. Kushner; A.H. Jan Danser; Joep H.M. van Esch

Angiotensin-induced vasodilation, involving type 2 receptor (AT2R)–induced generation of nitric oxide (NO; by endothelial NO synthase) and endothelium-derived hyperpolarizing factors, may be limited to women. To distinguish the contribution of female sex hormones and chromosomes to AT2R function and endothelium-derived hyperpolarizing factor–mediated vasodilation, we made use of the four-core genotype model, where the testis-determining Sry gene has been deleted (Y−) from the Y chromosome, allowing XY− mice to develop a female gonadal phenotype. Simultaneously, by incorporating the Sry gene onto an autosome, XY−Sry and XXSry transgenic mice develop into gonadal male mice. Four-core genotype mice underwent a sham or gonadectomy (GDX) operation, and after 8 weeks, iliac arteries were collected to assess vascular function. XY−Sry male mice responded more strongly to angiotensin than XX female mice, and the AT2R antagonist PD123319 revealed that this was because of a dilator AT2R-mediated effect occurring exclusively in XX female mice. The latter could not be demonstrated in XXSry male and XY− female mice nor in XX female mice after GDX, suggesting that it depends on both sex hormones and chromosomes. Indeed, treating C57bl/6 GDX male mice with estrogen could not restore angiotensin-mediated, AT2R-dependent relaxation. To block acetylcholine-induced relaxation of iliac arteries obtained from four-core genotype XX mice, both endothelial NO synthase and endothelium-derived hyperpolarizing factor inhibition were required, whereas in four-core genotype XY animals, endothelial NO synthase inhibition alone was sufficient. These findings were independent of gonadal sex and unaltered after GDX. In conclusion, AT2R-induced relaxation requires both estrogen and the XX chromosome sex complement, whereas only the latter is required for endothelium-derived hyperpolarizing factors.Angiotensin-induced vasodilation, involving type 2 receptor (AT2R)–induced generation of nitric oxide (NO; by endothelial NO synthase) and endothelium-derived hyperpolarizing factors, may be limited to women. To distinguish the contribution of female sex hormones and chromosomes to AT2R function and endothelium-derived hyperpolarizing factor–mediated vasodilation, we made use of the four-core genotype model, where the testis-determining Sry gene has been deleted (Y−) from the Y chromosome, allowing XY− mice to develop a female gonadal phenotype. Simultaneously, by incorporating the Sry gene onto an autosome, XY− Sry and XX Sry transgenic mice develop into gonadal male mice. Four-core genotype mice underwent a sham or gonadectomy (GDX) operation, and after 8 weeks, iliac arteries were collected to assess vascular function. XY− Sry male mice responded more strongly to angiotensin than XX female mice, and the AT2R antagonist PD123319 revealed that this was because of a dilator AT2R-mediated effect occurring exclusively in XX female mice. The latter could not be demonstrated in XX Sry male and XY− female mice nor in XX female mice after GDX, suggesting that it depends on both sex hormones and chromosomes. Indeed, treating C57bl/6 GDX male mice with estrogen could not restore angiotensin-mediated, AT2R-dependent relaxation. To block acetylcholine-induced relaxation of iliac arteries obtained from four-core genotype XX mice, both endothelial NO synthase and endothelium-derived hyperpolarizing factor inhibition were required, whereas in four-core genotype XY animals, endothelial NO synthase inhibition alone was sufficient. These findings were independent of gonadal sex and unaltered after GDX. In conclusion, AT2R-induced relaxation requires both estrogen and the XX chromosome sex complement, whereas only the latter is required for endothelium-derived hyperpolarizing factors. # Novelty and Significance {#article-title-34}


Hypertension | 2014

Multiple Ascending Dose Study With the New Renin Inhibitor VTP-27999

Joanna Balcarek; Bruno Sevá Pessôa; Catherine Bryson; Michel Azizi; Joël Ménard; Ingrid M. Garrelds; Gerard M. McGeehan; Richard A. Reeves; Sue G. Griffith; A.H. Jan Danser; Richard Gregg

This study compared the pharmacodynamic/pharmacokinetic profile of the new renin inhibitor VTP-27999 in salt-depleted healthy volunteers, administered once daily (75, 150, 300, and 600 mg) for 10 days, versus placebo and 300 mg aliskiren. VTP-27999 was well tolerated with no significant safety issues. It was rapidly absorbed, attaining maximum plasma concentrations at 1 to 4 hours after dosing, with a terminal half-life of 24 to 30 hours. Plasma renin activity remained suppressed during the 24-hour dosing interval at all doses. VTP-27999 administration resulted in a dose-dependent induction of renin, increasing the concentration of plasma renin maximally 350-fold. This induction was greater than with aliskiren, indicating greater intrarenal renin inhibition. VTP-27999 decreased plasma angiotensin II and aldosterone. At 24 hours and later time points after dosing on day 10 in the 600-mg group, angiotensin II and aldosterone levels were increased, and plasma renin activity was also increased at 48 and 72 hours, compared with baseline. VTP-27999 decreased urinary aldosterone excretion versus placebo on day 1. On day 10, urinary aldosterone excretion was higher in the 300- and 600-mg VTP-27999 dose groups compared with baseline. VTP-27999 decreased blood pressure to the same degree as aliskiren. In conclusion, excessive intrarenal renin inhibition, obtained at VTP-27999 doses of 300 mg and higher, is accompanied by plasma renin rises, that after stopping drug intake, exceed the capacity of extrarenal VTP-27999 to block fully the enzymatic reaction. This results in significant rises of angiotensin II and aldosterone. Therefore, renin inhibition has an upper limit. # Novelty and Significance {#article-title-16}This study compared the pharmacodynamic/pharmacokinetic profile of the new renin inhibitor VTP-27999 in salt-depleted healthy volunteers, administered once daily (75, 150, 300, and 600 mg) for 10 days, versus placebo and 300 mg aliskiren. VTP-27999 was well tolerated with no significant safety issues. It was rapidly absorbed, attaining maximum plasma concentrations at 1 to 4 hours after dosing, with a terminal half-life of 24 to 30 hours. Plasma renin activity remained suppressed during the 24-hour dosing interval at all doses. VTP-27999 administration resulted in a dose-dependent induction of renin, increasing the concentration of plasma renin maximally 350-fold. This induction was greater than with aliskiren, indicating greater intrarenal renin inhibition. VTP-27999 decreased plasma angiotensin II and aldosterone. At 24 hours and later time points after dosing on day 10 in the 600-mg group, angiotensin II and aldosterone levels were increased, and plasma renin activity was also increased at 48 and 72 hours, compared with baseline. VTP-27999 decreased urinary aldosterone excretion versus placebo on day 1. On day 10, urinary aldosterone excretion was higher in the 300- and 600-mg VTP-27999 dose groups compared with baseline. VTP-27999 decreased blood pressure to the same degree as aliskiren. In conclusion, excessive intrarenal renin inhibition, obtained at VTP-27999 doses of 300 mg and higher, is accompanied by plasma renin rises, that after stopping drug intake, exceed the capacity of extrarenal VTP-27999 to block fully the enzymatic reaction. This results in significant rises of angiotensin II and aldosterone. Therefore, renin inhibition has an upper limit.


Hypertension | 2015

Angiotensin II Type 2 Receptor– and Acetylcholine-Mediated RelaxationNovelty and Significance

Bruno Sevá Pessôa; Denise E. Slump; Khatera Ibrahimi; Aldo Grefhorst; Richard van Veghel; Ingrid M. Garrelds; Anton J.M. Roks; Steven A. Kushner; A.H. Jan Danser; Joep H.M. van Esch

Angiotensin-induced vasodilation, involving type 2 receptor (AT2R)–induced generation of nitric oxide (NO; by endothelial NO synthase) and endothelium-derived hyperpolarizing factors, may be limited to women. To distinguish the contribution of female sex hormones and chromosomes to AT2R function and endothelium-derived hyperpolarizing factor–mediated vasodilation, we made use of the four-core genotype model, where the testis-determining Sry gene has been deleted (Y−) from the Y chromosome, allowing XY− mice to develop a female gonadal phenotype. Simultaneously, by incorporating the Sry gene onto an autosome, XY−Sry and XXSry transgenic mice develop into gonadal male mice. Four-core genotype mice underwent a sham or gonadectomy (GDX) operation, and after 8 weeks, iliac arteries were collected to assess vascular function. XY−Sry male mice responded more strongly to angiotensin than XX female mice, and the AT2R antagonist PD123319 revealed that this was because of a dilator AT2R-mediated effect occurring exclusively in XX female mice. The latter could not be demonstrated in XXSry male and XY− female mice nor in XX female mice after GDX, suggesting that it depends on both sex hormones and chromosomes. Indeed, treating C57bl/6 GDX male mice with estrogen could not restore angiotensin-mediated, AT2R-dependent relaxation. To block acetylcholine-induced relaxation of iliac arteries obtained from four-core genotype XX mice, both endothelial NO synthase and endothelium-derived hyperpolarizing factor inhibition were required, whereas in four-core genotype XY animals, endothelial NO synthase inhibition alone was sufficient. These findings were independent of gonadal sex and unaltered after GDX. In conclusion, AT2R-induced relaxation requires both estrogen and the XX chromosome sex complement, whereas only the latter is required for endothelium-derived hyperpolarizing factors.Angiotensin-induced vasodilation, involving type 2 receptor (AT2R)–induced generation of nitric oxide (NO; by endothelial NO synthase) and endothelium-derived hyperpolarizing factors, may be limited to women. To distinguish the contribution of female sex hormones and chromosomes to AT2R function and endothelium-derived hyperpolarizing factor–mediated vasodilation, we made use of the four-core genotype model, where the testis-determining Sry gene has been deleted (Y−) from the Y chromosome, allowing XY− mice to develop a female gonadal phenotype. Simultaneously, by incorporating the Sry gene onto an autosome, XY− Sry and XX Sry transgenic mice develop into gonadal male mice. Four-core genotype mice underwent a sham or gonadectomy (GDX) operation, and after 8 weeks, iliac arteries were collected to assess vascular function. XY− Sry male mice responded more strongly to angiotensin than XX female mice, and the AT2R antagonist PD123319 revealed that this was because of a dilator AT2R-mediated effect occurring exclusively in XX female mice. The latter could not be demonstrated in XX Sry male and XY− female mice nor in XX female mice after GDX, suggesting that it depends on both sex hormones and chromosomes. Indeed, treating C57bl/6 GDX male mice with estrogen could not restore angiotensin-mediated, AT2R-dependent relaxation. To block acetylcholine-induced relaxation of iliac arteries obtained from four-core genotype XX mice, both endothelial NO synthase and endothelium-derived hyperpolarizing factor inhibition were required, whereas in four-core genotype XY animals, endothelial NO synthase inhibition alone was sufficient. These findings were independent of gonadal sex and unaltered after GDX. In conclusion, AT2R-induced relaxation requires both estrogen and the XX chromosome sex complement, whereas only the latter is required for endothelium-derived hyperpolarizing factors. # Novelty and Significance {#article-title-34}


Hypertension | 2015

Angiotensin II Type 2 Receptor– and Acetylcholine-Mediated Relaxation

Bruno Sevá Pessôa; Denise E. Slump; Khatera Ibrahimi; Aldo Grefhorst; Richard van Veghel; Ingrid M. Garrelds; Anton J.M. Roks; Steven A. Kushner; A.H. Jan Danser; Joep H.M. van Esch

Angiotensin-induced vasodilation, involving type 2 receptor (AT2R)–induced generation of nitric oxide (NO; by endothelial NO synthase) and endothelium-derived hyperpolarizing factors, may be limited to women. To distinguish the contribution of female sex hormones and chromosomes to AT2R function and endothelium-derived hyperpolarizing factor–mediated vasodilation, we made use of the four-core genotype model, where the testis-determining Sry gene has been deleted (Y−) from the Y chromosome, allowing XY− mice to develop a female gonadal phenotype. Simultaneously, by incorporating the Sry gene onto an autosome, XY−Sry and XXSry transgenic mice develop into gonadal male mice. Four-core genotype mice underwent a sham or gonadectomy (GDX) operation, and after 8 weeks, iliac arteries were collected to assess vascular function. XY−Sry male mice responded more strongly to angiotensin than XX female mice, and the AT2R antagonist PD123319 revealed that this was because of a dilator AT2R-mediated effect occurring exclusively in XX female mice. The latter could not be demonstrated in XXSry male and XY− female mice nor in XX female mice after GDX, suggesting that it depends on both sex hormones and chromosomes. Indeed, treating C57bl/6 GDX male mice with estrogen could not restore angiotensin-mediated, AT2R-dependent relaxation. To block acetylcholine-induced relaxation of iliac arteries obtained from four-core genotype XX mice, both endothelial NO synthase and endothelium-derived hyperpolarizing factor inhibition were required, whereas in four-core genotype XY animals, endothelial NO synthase inhibition alone was sufficient. These findings were independent of gonadal sex and unaltered after GDX. In conclusion, AT2R-induced relaxation requires both estrogen and the XX chromosome sex complement, whereas only the latter is required for endothelium-derived hyperpolarizing factors.Angiotensin-induced vasodilation, involving type 2 receptor (AT2R)–induced generation of nitric oxide (NO; by endothelial NO synthase) and endothelium-derived hyperpolarizing factors, may be limited to women. To distinguish the contribution of female sex hormones and chromosomes to AT2R function and endothelium-derived hyperpolarizing factor–mediated vasodilation, we made use of the four-core genotype model, where the testis-determining Sry gene has been deleted (Y−) from the Y chromosome, allowing XY− mice to develop a female gonadal phenotype. Simultaneously, by incorporating the Sry gene onto an autosome, XY− Sry and XX Sry transgenic mice develop into gonadal male mice. Four-core genotype mice underwent a sham or gonadectomy (GDX) operation, and after 8 weeks, iliac arteries were collected to assess vascular function. XY− Sry male mice responded more strongly to angiotensin than XX female mice, and the AT2R antagonist PD123319 revealed that this was because of a dilator AT2R-mediated effect occurring exclusively in XX female mice. The latter could not be demonstrated in XX Sry male and XY− female mice nor in XX female mice after GDX, suggesting that it depends on both sex hormones and chromosomes. Indeed, treating C57bl/6 GDX male mice with estrogen could not restore angiotensin-mediated, AT2R-dependent relaxation. To block acetylcholine-induced relaxation of iliac arteries obtained from four-core genotype XX mice, both endothelial NO synthase and endothelium-derived hyperpolarizing factor inhibition were required, whereas in four-core genotype XY animals, endothelial NO synthase inhibition alone was sufficient. These findings were independent of gonadal sex and unaltered after GDX. In conclusion, AT2R-induced relaxation requires both estrogen and the XX chromosome sex complement, whereas only the latter is required for endothelium-derived hyperpolarizing factors. # Novelty and Significance {#article-title-34}


Hypertension | 2014

Multiple Ascending Dose Study With the New Renin Inhibitor VTP-27999Novelty and Significance

Joanna Balcarek; Bruno Sevá Pessôa; Catherine Bryson; Michel Azizi; Joël Ménard; Ingrid M. Garrelds; Gerard M. McGeehan; Richard A. Reeves; Sue G. Griffith; A.H. Jan Danser; Richard Gregg

This study compared the pharmacodynamic/pharmacokinetic profile of the new renin inhibitor VTP-27999 in salt-depleted healthy volunteers, administered once daily (75, 150, 300, and 600 mg) for 10 days, versus placebo and 300 mg aliskiren. VTP-27999 was well tolerated with no significant safety issues. It was rapidly absorbed, attaining maximum plasma concentrations at 1 to 4 hours after dosing, with a terminal half-life of 24 to 30 hours. Plasma renin activity remained suppressed during the 24-hour dosing interval at all doses. VTP-27999 administration resulted in a dose-dependent induction of renin, increasing the concentration of plasma renin maximally 350-fold. This induction was greater than with aliskiren, indicating greater intrarenal renin inhibition. VTP-27999 decreased plasma angiotensin II and aldosterone. At 24 hours and later time points after dosing on day 10 in the 600-mg group, angiotensin II and aldosterone levels were increased, and plasma renin activity was also increased at 48 and 72 hours, compared with baseline. VTP-27999 decreased urinary aldosterone excretion versus placebo on day 1. On day 10, urinary aldosterone excretion was higher in the 300- and 600-mg VTP-27999 dose groups compared with baseline. VTP-27999 decreased blood pressure to the same degree as aliskiren. In conclusion, excessive intrarenal renin inhibition, obtained at VTP-27999 doses of 300 mg and higher, is accompanied by plasma renin rises, that after stopping drug intake, exceed the capacity of extrarenal VTP-27999 to block fully the enzymatic reaction. This results in significant rises of angiotensin II and aldosterone. Therefore, renin inhibition has an upper limit. # Novelty and Significance {#article-title-16}This study compared the pharmacodynamic/pharmacokinetic profile of the new renin inhibitor VTP-27999 in salt-depleted healthy volunteers, administered once daily (75, 150, 300, and 600 mg) for 10 days, versus placebo and 300 mg aliskiren. VTP-27999 was well tolerated with no significant safety issues. It was rapidly absorbed, attaining maximum plasma concentrations at 1 to 4 hours after dosing, with a terminal half-life of 24 to 30 hours. Plasma renin activity remained suppressed during the 24-hour dosing interval at all doses. VTP-27999 administration resulted in a dose-dependent induction of renin, increasing the concentration of plasma renin maximally 350-fold. This induction was greater than with aliskiren, indicating greater intrarenal renin inhibition. VTP-27999 decreased plasma angiotensin II and aldosterone. At 24 hours and later time points after dosing on day 10 in the 600-mg group, angiotensin II and aldosterone levels were increased, and plasma renin activity was also increased at 48 and 72 hours, compared with baseline. VTP-27999 decreased urinary aldosterone excretion versus placebo on day 1. On day 10, urinary aldosterone excretion was higher in the 300- and 600-mg VTP-27999 dose groups compared with baseline. VTP-27999 decreased blood pressure to the same degree as aliskiren. In conclusion, excessive intrarenal renin inhibition, obtained at VTP-27999 doses of 300 mg and higher, is accompanied by plasma renin rises, that after stopping drug intake, exceed the capacity of extrarenal VTP-27999 to block fully the enzymatic reaction. This results in significant rises of angiotensin II and aldosterone. Therefore, renin inhibition has an upper limit.


Hypertension | 2014

Multiple Ascending Dose Study With the New Renin Inhibitor VTP-27999Novelty and Significance: Nephrocentric Consequences of Too Much Renin Inhibition

Joanna Balcarek; Bruno Sevá Pessôa; Catherine Bryson; Michel Azizi; Joël Ménard; Ingrid M. Garrelds; Gerard M. McGeehan; Richard A. Reeves; Sue G. Griffith; A.H. Jan Danser; Richard Gregg

This study compared the pharmacodynamic/pharmacokinetic profile of the new renin inhibitor VTP-27999 in salt-depleted healthy volunteers, administered once daily (75, 150, 300, and 600 mg) for 10 days, versus placebo and 300 mg aliskiren. VTP-27999 was well tolerated with no significant safety issues. It was rapidly absorbed, attaining maximum plasma concentrations at 1 to 4 hours after dosing, with a terminal half-life of 24 to 30 hours. Plasma renin activity remained suppressed during the 24-hour dosing interval at all doses. VTP-27999 administration resulted in a dose-dependent induction of renin, increasing the concentration of plasma renin maximally 350-fold. This induction was greater than with aliskiren, indicating greater intrarenal renin inhibition. VTP-27999 decreased plasma angiotensin II and aldosterone. At 24 hours and later time points after dosing on day 10 in the 600-mg group, angiotensin II and aldosterone levels were increased, and plasma renin activity was also increased at 48 and 72 hours, compared with baseline. VTP-27999 decreased urinary aldosterone excretion versus placebo on day 1. On day 10, urinary aldosterone excretion was higher in the 300- and 600-mg VTP-27999 dose groups compared with baseline. VTP-27999 decreased blood pressure to the same degree as aliskiren. In conclusion, excessive intrarenal renin inhibition, obtained at VTP-27999 doses of 300 mg and higher, is accompanied by plasma renin rises, that after stopping drug intake, exceed the capacity of extrarenal VTP-27999 to block fully the enzymatic reaction. This results in significant rises of angiotensin II and aldosterone. Therefore, renin inhibition has an upper limit. # Novelty and Significance {#article-title-16}This study compared the pharmacodynamic/pharmacokinetic profile of the new renin inhibitor VTP-27999 in salt-depleted healthy volunteers, administered once daily (75, 150, 300, and 600 mg) for 10 days, versus placebo and 300 mg aliskiren. VTP-27999 was well tolerated with no significant safety issues. It was rapidly absorbed, attaining maximum plasma concentrations at 1 to 4 hours after dosing, with a terminal half-life of 24 to 30 hours. Plasma renin activity remained suppressed during the 24-hour dosing interval at all doses. VTP-27999 administration resulted in a dose-dependent induction of renin, increasing the concentration of plasma renin maximally 350-fold. This induction was greater than with aliskiren, indicating greater intrarenal renin inhibition. VTP-27999 decreased plasma angiotensin II and aldosterone. At 24 hours and later time points after dosing on day 10 in the 600-mg group, angiotensin II and aldosterone levels were increased, and plasma renin activity was also increased at 48 and 72 hours, compared with baseline. VTP-27999 decreased urinary aldosterone excretion versus placebo on day 1. On day 10, urinary aldosterone excretion was higher in the 300- and 600-mg VTP-27999 dose groups compared with baseline. VTP-27999 decreased blood pressure to the same degree as aliskiren. In conclusion, excessive intrarenal renin inhibition, obtained at VTP-27999 doses of 300 mg and higher, is accompanied by plasma renin rises, that after stopping drug intake, exceed the capacity of extrarenal VTP-27999 to block fully the enzymatic reaction. This results in significant rises of angiotensin II and aldosterone. Therefore, renin inhibition has an upper limit.

Collaboration


Dive into the Bruno Sevá Pessôa's collaboration.

Top Co-Authors

Avatar

A.H. Jan Danser

Erasmus University Rotterdam

View shared research outputs
Top Co-Authors

Avatar

Ingrid M. Garrelds

Erasmus University Rotterdam

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Richard van Veghel

Erasmus University Rotterdam

View shared research outputs
Top Co-Authors

Avatar

Aldo Grefhorst

Erasmus University Rotterdam

View shared research outputs
Top Co-Authors

Avatar

Denise E. Slump

Erasmus University Rotterdam

View shared research outputs
Top Co-Authors

Avatar

Joep H.M. van Esch

Erasmus University Rotterdam

View shared research outputs
Top Co-Authors

Avatar

Khatera Ibrahimi

Erasmus University Rotterdam

View shared research outputs
Top Co-Authors

Avatar

Steven A. Kushner

Erasmus University Rotterdam

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge