Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Bryan A. Millis is active.

Publication


Featured researches published by Bryan A. Millis.


Current Biology | 2013

NMII Forms a Contractile Transcellular Sarcomeric Network to Regulate Apical Cell Junctions and Tissue Geometry

Seham Ebrahim; Tomoki Fujita; Bryan A. Millis; Elliott D. Kozin; Xuefei Ma; Sachiyo Kawamoto; Michelle A. Baird; Michael W. Davidson; Shigenobu Yonemura; Yasuo Hisa; Mary Anne Conti; Robert S. Adelstein; Hirofumi Sakaguchi; Bechara Kachar

Nonmuscle myosin II (NMII) is thought to be the master integrator of force within epithelial apical junctions, mediating epithelial tissue morphogenesis and tensional homeostasis. Mutations in NMII are associated with a number of diseases due to failures in cell-cell adhesion. However, the organization and the precise mechanism by which NMII generates and responds to tension along the intercellular junctional line are still not known. We discovered that periodic assemblies of bipolar NMII filaments interlace with perijunctional actin and α-actinin to form a continuous belt of muscle-like sarcomeric units (∼400-600 nm) around each epithelial cell. Remarkably, the sarcomeres of adjacent cells are precisely paired across the junctional line, forming an integrated, transcellular contractile network. The contraction/relaxation of paired sarcomeres concomitantly impacts changes in apical cell shape and tissue geometry. We show differential distribution of NMII isoforms across heterotypic junctions and evidence for compensation between isoforms. Our results provide a model for how NMII force generation is effected along the junctional perimeter of each cell and communicated across neighboring cells in the epithelial organization. The sarcomeric network also provides a well-defined target to investigate the multiple roles of NMII in junctional homeostasis as well as in development and disease.


eLife | 2013

Caveolae internalization repairs wounded cells and muscle fibers

Matthias Corrotte; Patricia E. de Almeida; Christina Tam; Thiago Castro-Gomes; Maria Cecilia Fernandes; Bryan A. Millis; Mauro Cortez; Heather Miller; Wenxia Song; Timothy K. Maugel; Norma W. Andrews

Rapid repair of plasma membrane wounds is critical for cellular survival. Muscle fibers are particularly susceptible to injury, and defective sarcolemma resealing causes muscular dystrophy. Caveolae accumulate in dystrophic muscle fibers and caveolin and cavin mutations cause muscle pathology, but the underlying mechanism is unknown. Here we show that muscle fibers and other cell types repair membrane wounds by a mechanism involving Ca2+-triggered exocytosis of lysosomes, release of acid sphingomyelinase, and rapid lesion removal by caveolar endocytosis. Wounding or exposure to sphingomyelinase triggered endocytosis and intracellular accumulation of caveolar vesicles, which gradually merged into larger compartments. The pore-forming toxin SLO was directly visualized entering cells within caveolar vesicles, and depletion of caveolin inhibited plasma membrane resealing. Our findings directly link lesion removal by caveolar endocytosis to the maintenance of plasma membrane and muscle fiber integrity, providing a mechanistic explanation for the muscle pathology associated with mutations in caveolae proteins. DOI: http://dx.doi.org/10.7554/eLife.00926.001


Cell | 2014

Intestinal brush border assembly driven by protocadherin-based intermicrovillar adhesion

Scott W. Crawley; David A. Shifrin; Nathan E. Grega-Larson; Russell E. McConnell; Andrew E. Benesh; Suli Mao; Yuxi Zheng; Qing Yin Zheng; Ki Taek Nam; Bryan A. Millis; Bechara Kachar; Matthew J. Tyska

Transporting epithelial cells build apical microvilli to increase membrane surface area and enhance absorptive capacity. The intestinal brush border provides an elaborate example with tightly packed microvilli that function in nutrient absorption and host defense. Although the brush border is essential for physiological homeostasis, its assembly is poorly understood. We found that brush border assembly is driven by the formation of Ca(2+)-dependent adhesion links between adjacent microvilli. Intermicrovillar links are composed of protocadherin-24 and mucin-like protocadherin, which target to microvillar tips and interact to form a trans-heterophilic complex. The cytoplasmic domains of microvillar protocadherins interact with the scaffolding protein, harmonin, and myosin-7b, which promote localization to microvillar tips. Finally, a mouse model of Usher syndrome lacking harmonin exhibits microvillar protocadherin mislocalization and severe defects in brush border morphology. These data reveal an adhesion-based mechanism for brush border assembly and illuminate the basis of intestinal pathology in patients with Usher syndrome. PAPERFLICK:


Cell Reports | 2015

TMC1 and TMC2 Localize at the Site of Mechanotransduction in Mammalian Inner Ear Hair Cell Stereocilia.

Kiyoto Kurima; Seham Ebrahim; Bifeng Pan; Miloslav Sedlacek; Prabuddha Sengupta; Bryan A. Millis; Runjia Cui; Hiroshi Nakanishi; Taro Fujikawa; Yoshiyuki Kawashima; Byung Yoon Choi; Kelly Monahan; Jeffrey R. Holt; Andrew J. Griffith; Bechara Kachar

Mechanosensitive ion channels at stereocilia tips mediate mechanoelectrical transduction (MET) in inner ear sensory hair cells. Transmembrane channel-like 1 and 2 (TMC1 and TMC2) are essential for MET and are hypothesized to be components of the MET complex, but evidence for their predicted spatiotemporal localization in stereocilia is lacking. Here, we determine the stereocilia localization of the TMC proteins in mice expressing TMC1-mCherry and TMC2-AcGFP. Functionality of the tagged proteins was verified by transgenic rescue of MET currents and hearing in Tmc1(Δ/Δ);Tmc2(Δ/Δ) mice. TMC1-mCherry and TMC2-AcGFP localize along the length of immature stereocilia. However, as hair cells develop, the two proteins localize predominantly to stereocilia tips. Both TMCs are absent from the tips of the tallest stereocilia, where MET activity is not detectable. This distribution was confirmed for the endogenous proteins by immunofluorescence. These data are consistent with TMC1 and TMC2 being components of the stereocilia MET channel complex.


Cytotherapy | 2013

Automated microscopy as a quantitative method to measure differences in adipogenic differentiation in preparations of human mesenchymal stromal cells

Jessica Lo Surdo; Bryan A. Millis; Steven R. Bauer

BACKGROUND AIMS Multipotent stromal cells, also called mesenchymal stromal cells (MSCs), are potentially valuable as a cellular therapy because of their differentiation and immunosuppressive properties. As the result of extensive heterogeneity of MSCs, quantitative approaches to measure differentiation capacity between donors and passages on a per-cell basis are needed. METHODS Human bone marrow-derived MSCs were expanded to passages P3, P5 and P7 from eight different donors and were analyzed for colony-forming unit capacity (CFU), cell size, surface marker expression and forward/side-scatter analysis by flow cytometry. Adipogenic differentiation potential was quantified with the use of automated microscopy. Percentage of adipogenesis was determined by quantifying nuclei and Nile red-positive adipocytes after automated image acquisition. RESULTS MSCs varied in expansion capacity and increased in average cell diameter with passage. CFU capacity decreased with passage and varied among cell lines within the same passage. The number of adipogenic precursors varied between cell lines, ranging from 0.5% to 13.6% differentiation at P3. Adipogenic capacity decreased significantly with increasing passage. MSC cell surface marker analysis revealed no changes caused by passaging or donor differences. CONCLUSIONS We measured adipogenic differentiation on a per-cell basis with high precision and accuracy with the use of automated fluorescence microscopy. We correlated these findings with other quantitative bioassays to better understand the role of donor variability and passaging on CFU, cell size and adipogenic differentiation capacity in vitro. These quantitative approaches provide valuable tools to measure MSC quality and measure functional biological differences between donors and cell passages that are not revealed by conventional MSC cell surface marker analysis.


Nature Communications | 2016

Stereocilia-staircase spacing is influenced by myosin III motors and their cargos espin-1 and espin-like

Seham Ebrahim; Matthew R. Avenarius; M'hamed Grati; Jocelyn F. Krey; Alanna M. Windsor; Aurea D. Sousa; Angela Ballesteros; Runjia Cui; Bryan A. Millis; Felipe T. Salles; Michelle A. Baird; Michael W. Davidson; Sherri M. Jones; Dongseok Choi; Lijin Dong; Manmeet H. Raval; Christopher M. Yengo; Peter G. Barr-Gillespie; Bechara Kachar

Hair cells tightly control the dimensions of their stereocilia, which are actin-rich protrusions with graded heights that mediate mechanotransduction in the inner ear. Two members of the myosin-III family, MYO3A and MYO3B, are thought to regulate stereocilia length by transporting cargos that control actin polymerization at stereocilia tips. We show that eliminating espin-1 (ESPN-1), an isoform of ESPN and a myosin-III cargo, dramatically alters the slope of the stereocilia staircase in a subset of hair cells. Furthermore, we show that espin-like (ESPNL), primarily present in developing stereocilia, is also a myosin-III cargo and is essential for normal hearing. ESPN-1 and ESPNL each bind MYO3A and MYO3B, but differentially influence how the two motors function. Consequently, functional properties of different motor-cargo combinations differentially affect molecular transport and the length of actin protrusions. This mechanism is used by hair cells to establish the required range of stereocilia lengths within a single cell.


Hearing Research | 2014

Localization of kainate receptors in inner and outer hair cell synapses.

Taro Fujikawa; Ronald S. Petralia; Tracy S. Fitzgerald; Ya-Xian Wang; Bryan A. Millis; José Andrés Morgado-Díaz; Ken Kitamura; Bechara Kachar

Glutamate plays a role in hair cell afferent transmission, but the receptors that mediate neurotransmission between outer hair cells (OHCs) and type II ganglion neurons are not well defined. A previous study using in situ hybridization showed that several kainate-type glutamate receptor (KAR) subunits are expressed in cochlear ganglion neurons. To determine whether KARs are expressed in hair cell synapses, we performed X-gal staining on mice expressing lacZ driven by the GluK5 promoter, and immunolabeling of glutamate receptors in whole-mount mammalian cochleae. X-gal staining revealed GluK5 expression in both type I and type II ganglion neurons and OHCs in adults. OHCs showed X-gal reactivity throughout maturation from postnatal day 4 (P4) to 1.5 months. Immunoreactivity for GluK5 in IHC afferent synapses appeared to be postsynaptic, similar to GluA2 (GluR2; AMPA-type glutamate receptor (AMPAR) subunit), while GluK2 may be on both sides of the synapses. In OHC afferent synapses, immunoreactivity for GluK2 and GluK5 was found, although GluK2 was only in those synapses bearing ribbons. GluA2 was not detected in adult OHC afferent synapses. Interestingly, GluK1, GluK2 and GluK5 were also detected in OHC efferent synapses, forming several active zones in each synaptic area. At P8, GluA2 and all KAR subunits except GluK4 were detected in OHC afferent synapses in the apical turn, and GluA2, GluK1, GluK3 decreased dramatically in the basal turn. These results indicate that AMPARs and KARs (GluK2/GluK5) are localized to IHC afferent synapses, while only KARs (GluK2/GluK5) are localized to OHC afferent synapses in adults. Glutamate spillover near OHCs may act on KARs in OHC efferent terminals to modulate transmission of acoustic information and OHC electromotility.


JCI insight | 2017

Optimized multiplex immunofluorescence single-cell analysis reveals tuft cell heterogeneity

Eliot T. McKinley; Yunxia Sui; Yousef Al-Kofahi; Bryan A. Millis; Matthew J. Tyska; Joseph T. Roland; Alberto Santamaria-Pang; Christina L. Ohland; Christian Jobin; Jeffrey L. Franklin; Ken S. Lau; Michael J. Gerdes; Robert J. Coffey

Intestinal tuft cells are a rare, poorly understood cell type recently shown to be a critical mediator of type 2 immune response to helminth infection. Here, we present advances in segmentation algorithms and analytical tools for multiplex immunofluorescence (MxIF), a platform that enables iterative staining of over 60 antibodies on a single tissue section. These refinements have enabled a comprehensive analysis of tuft cell number, distribution, and protein expression profiles as a function of anatomical location and physiological perturbations. Based solely on DCLK1 immunoreactivity, tuft cell numbers were similar throughout the mouse small intestine and colon. However, multiple subsets of tuft cells were uncovered when protein coexpression signatures were examined, including two new intestinal tuft cell markers, Hopx and EGFR phosphotyrosine 1068. Furthermore, we identified dynamic changes in tuft cell number, composition, and protein expression associated with fasting and refeeding and after introduction of microbiota to germ-free mice. These studies provide a foundational framework for future studies of intestinal tuft cell regulation and demonstrate the utility of our improved MxIF computational methods and workflow for understanding cellular heterogeneity in complex tissues in normal and disease states.


Scientific Reports | 2015

Self-organization of waves and pulse trains by molecular motors in cellular protrusions

Arik Yochelis; S. Ebrahim; Bryan A. Millis; Runjia Cui; Bechara Kachar; Moshe Naoz; Nir S. Gov

Actin-based cellular protrusions are an ubiquitous feature of cells, performing a variety of critical functions ranging from cell-cell communication to cell motility. The formation and maintenance of these protrusions relies on the transport of proteins via myosin motors, to the protrusion tip. While tip-directed motion leads to accumulation of motors (and their molecular cargo) at the protrusion tip, it is observed that motors also form rearward moving, periodic and isolated aggregates. The origins and mechanisms of these aggregates, and whether they are important for the recycling of motors, remain open puzzles. Motivated by novel myosin-XV experiments, a mass conserving reaction-diffusion-advection model is proposed. The model incorporates a non-linear cooperative interaction between motors, which converts them between an active and an inactive state. Specifically, the type of aggregate formed (traveling waves or pulse-trains) is linked to the kinetics of motors at the protrusion tip which is introduced by a boundary condition. These pattern selection mechanisms are found not only to qualitatively agree with empirical observations but open new vistas to the transport phenomena by molecular motors in general.


Scientific Reports | 2016

Focal adhesions control cleavage furrow shape and spindle tilt during mitosis

Nilay Taneja; Aidan M. Fenix; Lindsay Rathbun; Bryan A. Millis; Matthew J. Tyska; Heidi Hehnly; Dylan T. Burnette

The geometry of the cleavage furrow during mitosis is often asymmetric in vivo and plays a critical role in stem cell differentiation and the relative positioning of daughter cells during development. Early observations of adhesive cell lines revealed asymmetry in the shape of the cleavage furrow, where the bottom (i.e., substrate attached side) of the cleavage furrow ingressed less than the top (i.e., unattached side). This data suggested substrate attachment could be regulating furrow ingression. Here we report a population of mitotic focal adhesions (FAs) controls the symmetry of the cleavage furrow. In single HeLa cells, stronger adhesion to the substrate directed less ingression from the bottom of the cell through a pathway including paxillin, focal adhesion kinase (FAK) and vinculin. Cell-cell contacts also direct ingression of the cleavage furrow in coordination with FAs in epithelial cells—MDCK—within monolayers and polarized cysts. In addition, mitotic FAs established 3D orientation of the mitotic spindle and the relative positioning of mother and daughter centrosomes. Therefore, our data reveals mitotic FAs as a key link between mitotic cell shape and spindle orientation, and may have important implications in our understanding stem cell homeostasis and tumorigenesis.

Collaboration


Dive into the Bryan A. Millis's collaboration.

Top Co-Authors

Avatar

Bechara Kachar

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Runjia Cui

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Seham Ebrahim

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Alanna M. Windsor

University of Pennsylvania

View shared research outputs
Top Co-Authors

Avatar

Angela Ballesteros

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Aurea D. Sousa

University of North Carolina at Chapel Hill

View shared research outputs
Top Co-Authors

Avatar

Christopher M. Yengo

Pennsylvania State University

View shared research outputs
Researchain Logo
Decentralizing Knowledge