Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Bryan G. Allen is active.

Publication


Featured researches published by Bryan G. Allen.


Nature Methods | 2005

Transgenic Xenopus laevis embryos can be generated using phiC31 integrase.

Bryan G. Allen; Daniel L. Weeks

Bacteriophage φC31 encodes an integrase that can mediate the insertion of extrachromosomal DNA into genomic DNA. Here we show that the coinjection of mRNA encoding φC31 integrase with plasmid DNA encoding the green fluorescent protein (GFP) can be used to generate transgenic X. laevis embryos. Despite integration into the genome, appropriate promoter expression required modification of the reporter plasmid by bracketing the GFP reporter gene with tandem copies of the chicken β-globin 5′ HS4 insulator to relieve silencing owing to chromatin position effects. These experiments demonstrate that the integration of insulated gene sequences using φC31 integrase can be used to efficiently create transgenic embryos in X. laevis and may increase the practical use of φC31 integrase in other systems as well.


Clinical Cancer Research | 2013

Ketogenic Diets Enhance Oxidative Stress and Radio-Chemo-Therapy Responses in Lung Cancer Xenografts

Bryan G. Allen; Sudershan K. Bhatia; John M. Buatti; Kristin E. Brandt; Kaleigh E. Lindholm; Anna Button; Luke I. Szweda; Brian J. Smith; Douglas R. Spitz; Melissa A. Fath

Purpose: Ketogenic diets are high in fat and low in carbohydrates as well as protein which forces cells to rely on lipid oxidation and mitochondrial respiration rather than glycolysis for energy metabolism. Cancer cells (relative to normal cells) are believed to exist in a state of chronic oxidative stress mediated by mitochondrial metabolism. The current study tests the hypothesis that ketogenic diets enhance radio-chemo-therapy responses in lung cancer xenografts by enhancing oxidative stress. Experimental Design: Mice bearing NCI-H292 and A549 lung cancer xenografts were fed a ketogenic diet (KetoCal 4:1 fats: proteins+carbohydrates) and treated with either conventionally fractionated (1.8–2 Gy) or hypofractionated (6 Gy) radiation as well as conventionally fractionated radiation combined with carboplatin. Mice weights and tumor size were monitored. Tumors were assessed for immunoreactive 4-hydroxy-2-nonenal-(4HNE)–modified proteins as a marker of oxidative stress as well as proliferating cell nuclear antigen (PCNA) and γH2AX as indices of proliferation and DNA damage, respectively. Results: The ketogenic diets combined with radiation resulted in slower tumor growth in both NCI-H292 and A549 xenografts (P < 0.05), relative to radiation alone. The ketogenic diet also slowed tumor growth when combined with carboplatin and radiation, relative to control. Tumors from animals fed a ketogenic diet in combination with radiation showed increases in oxidative damage mediated by lipid peroxidation as determined by 4HNE-modified proteins as well as decreased proliferation as assessed by decreased immunoreactive PCNA. Conclusions: These results show that a ketogenic diet enhances radio-chemo-therapy responses in lung cancer xenografts by a mechanism that may involve increased oxidative stress. Clin Cancer Res; 19(14); 3905–13. ©2013 AACR.


Redox biology | 2014

Ketogenic diets as an adjuvant cancer therapy: History and potential mechanism

Bryan G. Allen; Sudershan K. Bhatia; Carryn M. Anderson; Julie M. Eichenberger-Gilmore; Zita A. Sibenaller; Kranti A. Mapuskar; Joshua D. Schoenfeld; John M. Buatti; Douglas R. Spitz; Melissa A. Fath

Cancer cells, relative to normal cells, demonstrate significant alterations in metabolism that are proposed to result in increased steady-state levels of mitochondrial-derived reactive oxygen species (ROS) such as O2•−and H2O2. It has also been proposed that cancer cells increase glucose and hydroperoxide metabolism to compensate for increased levels of ROS. Given this theoretical construct, it is reasonable to propose that forcing cancer cells to use mitochondrial oxidative metabolism by feeding ketogenic diets that are high in fats and low in glucose and other carbohydrates, would selectively cause metabolic oxidative stress in cancer versus normal cells. Increased metabolic oxidative stress in cancer cells would in turn be predicted to selectively sensitize cancer cells to conventional radiation and chemotherapies. This review summarizes the evidence supporting the hypothesis that ketogenic diets may be safely used as an adjuvant therapy to conventional radiation and chemotherapies and discusses the proposed mechanisms by which ketogenic diets may enhance cancer cell therapeutic responses.


Cancer Cell | 2017

O2⋅− and H2O2-Mediated Disruption of Fe Metabolism Causes the Differential Susceptibility of NSCLC and GBM Cancer Cells to Pharmacological Ascorbate

Joshua D. Schoenfeld; Zita A. Sibenaller; Kranti A. Mapuskar; Brett A. Wagner; Kimberly Cramer-Morales; Muhammad Furqan; Sonia Sandhu; Thomas L. Carlisle; Mark C. Smith; Taher Abu Hejleh; Daniel J. Berg; Jun Zhang; John Keech; Kalpaj R. Parekh; Sudershan K. Bhatia; Varun Monga; Kellie L. Bodeker; Logan Ahmann; Sandy Vollstedt; Heather Brown; Erin P.Shanahan Kauffman; Mary E. Schall; Raymond J. Hohl; Gerald H. Clamon; Jeremy D. W. Greenlee; Matthew A. Howard; Michael K. Schultz; Brian J. Smith; Dennis Riley; Frederick E. Domann

Pharmacological ascorbate has been proposed as a potential anti-cancer agent when combined with radiation and chemotherapy. The anti-cancer effects of ascorbate are hypothesized to involve the autoxidation of ascorbate leading to increased steady-state levels of H2O2; however, the mechanism(s) for cancer cell-selective toxicity remain unknown. The current study shows that alterations in cancer cell mitochondrial oxidative metabolism resulting in increased levels of O2⋅- and H2O2 are capable of disrupting intracellular iron metabolism, thereby selectively sensitizing non-small-cell lung cancer (NSCLC) and glioblastoma (GBM) cells to ascorbate through pro-oxidant chemistry involving redox-active labile iron and H2O2. In addition, preclinical studies and clinical trials demonstrate the feasibility, selective toxicity, tolerability, and potential efficacy of pharmacological ascorbate in GBM and NSCLC therapy.


Cancer Research | 2015

Pharmacological Ascorbate Radiosensitizes Pancreatic Cancer

Juan Du; John A. Cieslak; Jessemae L. Welsh; Zita A. Sibenaller; Bryan G. Allen; Brett A. Wagner; Amanda L. Kalen; Claire M. Doskey; Robert K. Strother; Anna Button; Sarah L. Mott; Brian J. Smith; Susan Tsai; James J. Mezhir; Prabhat C. Goswami; Douglas R. Spitz; Garry R. Buettner; Joseph J. Cullen

The toxicity of pharmacologic ascorbate is mediated by the generation of H2O2 via the oxidation of ascorbate. Because pancreatic cancer cells are sensitive to H2O2 generated by ascorbate, they would also be expected to become sensitized to agents that increase oxidative damage such as ionizing radiation. The current study demonstrates that pharmacologic ascorbate enhances the cytotoxic effects of ionizing radiation as seen by decreased cell viability and clonogenic survival in all pancreatic cancer cell lines examined, but not in nontumorigenic pancreatic ductal epithelial cells. Ascorbate radiosensitization was associated with an increase in oxidative stress-induced DNA damage, which was reversed by catalase. In mice with established heterotopic and orthotopic pancreatic tumor xenografts, pharmacologic ascorbate combined with ionizing radiation decreased tumor growth and increased survival, without damaging the gastrointestinal tract or increasing systemic changes in parameters indicative of oxidative stress. Our results demonstrate the potential clinical utility of pharmacologic ascorbate as a radiosensitizer in the treatment of pancreatic cancer.


Clinical Cancer Research | 2015

Loss of SOD3 (EcSOD) Expression Promotes an Aggressive Phenotype in Human Pancreatic Ductal Adenocarcinoma

Brianne R. O'Leary; Melissa A. Fath; Andrew M. Bellizzi; Jennifer E. Hrabe; Anna Button; Bryan G. Allen; Adam J. Case; Sean F. Altekruse; Brett A. Wagner; Garry R. Buettner; Charles F. Lynch; Brenda Y. Hernandez; Wendy Cozen; Robert A. Beardsley; Jeffery L. Keene; Michael D. Henry; Frederick E. Domann; Douglas R. Spitz; James J. Mezhir

Purpose: Pancreatic ductal adenocarcinoma (PDA) cells are known to produce excessive amounts of reactive oxygen species (ROS), particularly superoxide, which may contribute to the aggressive and refractory nature of this disease. Extracellular superoxide dismutase (EcSOD) is an antioxidant enzyme that catalyzes the dismutation of superoxide in the extracellular environment. This study tests the hypothesis that EcSOD modulates PDA growth and invasion by modifying the redox balance in PDA. Experimental Design: We evaluated the prognostic significance of EcSOD in a human tissue microarray (TMA) of patients with PDA. EcSOD overexpression was performed in PDA cell lines and animal models of disease. The impact of EcSOD on PDA cell lines was evaluated with Matrigel invasion in combination with a superoxide-specific SOD mimic and a nitric oxide synthase (NOS) inhibitor to determine the mechanism of action of EcSOD in PDA. Results: Loss of EcSOD expression is a common event in PDA, which correlated with worse disease biology. Overexpression of EcSOD in PDA cell lines resulted in decreased invasiveness that appeared to be related to reactions of superoxide with nitric oxide. Pancreatic cancer xenografts overexpressing EcSOD also demonstrated slower growth and peritoneal metastasis. Overexpression of EcSOD or treatment with a superoxide-specific SOD mimic caused significant decreases in PDA cell invasive capacity. Conclusions: These results support the hypothesis that loss of EcSOD leads to increased reactions of superoxide with nitric oxide, which contributes to the invasive phenotype. These results allow for the speculation that superoxide dismutase mimetics might inhibit PDA progression in human clinical disease. Clin Cancer Res; 21(7); 1741–51. ©2015 AACR.


Nature Protocols | 2006

Using phiC31 integrase to make transgenic Xenopus laevis embryos

Bryan G. Allen; Daniel L. Weeks

Bacteriophage phiC31 produces the enzyme integrase that allows the insertion of the phage genome into its bacterial host. This enzyme recognizes a specific DNA sequence in the phage (attP) and a different sequence in the bacterium (attB). Recombination between these sites leads to integration in a reaction that requires no accessory factors. Seminal studies by the Calos laboratory demonstrated that the phiC31 integrase was capable of integrating plasmid with an attB site into mammalian genomes at sites that approximated the attP site. We describe the use of attB-containing plasmids with insulated reporter genes for the successful integration of DNA into Xenopus embryos. The method offers a way to produce transgenic embryos without manipulation of sperm nuclei using microinjection methods that are standard for experiments in Xenopus laevis. The method aims to allow the non-mosaic controlled expression of new genetic material in the injected embryo and compares favorably with the time that is normally taken to analyze embryos injected with mRNAs, plasmids, morpholinos or oligonucleotides.


Radiation Research | 2016

Enhancement of Radiation Response in Breast Cancer Stem Cells by Inhibition of Thioredoxin- and Glutathione-Dependent Metabolism

Samuel N. Rodman; Jacquelyn Spence; Tyler J. Ronnfeldt; Yueming Zhu; Shane R. Solst; Rebecca A. O'Neill; Bryan G. Allen; Xiangming Guan; Douglas R. Spitz; Melissa A. Fath

The goal of this study was to determine if depletion of glutathione (GSH) and inhibition of thioredoxin (Trx) reductase (TrxR) activity could enhance radiation responses in human breast cancer stem cells by a mechanism involving thiol-dependent oxidative stress. The following were used to inhibit GSH and Trx metabolism: buthionine sulfoximine (BSO), a GSH synthesis inhibitor; sulfasalazine (SSZ), an inhibitor of xc– cysteine/glutamate antiporter; auranofin (Au), a thioredoxin reductase inhibitor; or 2-AAPA, a GSH-reductase inhibitor. Clonogenic survival, Matrigel assays, flow cytometry cancer stem cell assays (CD44+CD24–ESA+ or ALDH1) and human tumor xenograft models were used to determine the antitumor activity of drug and radiation combinations. Combined inhibition of GSH and Trx metabolism enhanced cancer cell clonogenic killing and radiation responses in human breast and pancreatic cancer cells via a mechanism that could be inhibited by N-acetylcysteine (NAC). Au, BSO and radiation also significantly decreased breast cancer cell migration and invasion in a thiol-dependent manner that could be inhibited by NAC. In addition, pretreating cells with Au sensitized breast cancer stem cell populations to radiation in vitro as determined by CD44+CD24–ESA+ or ALDH1. Combined administration of Au and BSO, given prior to irradiation, significantly increased the survival of mice with human breast cancer xenografts, and decreased the number of ALDH1+ cancer stem cells. These results indicate that combined inhibition of GSH- and Trx-dependent thiol metabolism using pharmacologically relevant agents can enhance responses of human breast cancer stem cells to radiation both in vitro and in vivo.


Methods of Molecular Biology | 2009

Bacteriophage phiC31 integrase mediated transgenesis in Xenopus laevis for protein expression at endogenous levels.

Bryan G. Allen; Daniel L. Weeks

Bacteriophage phiC31 inserts its genome into that of its host bacterium via the integrase enzyme which catalyzes recombination between a phage attachment site (attP) and a bacterial attachment site (attB). Integrase requires no accessory factors, has a high efficiency of recombination, and does not need perfect sequence fidelity for recognition and recombination between these attachment sites. These imperfect attachment sites, or pseudo-attachment sites, are present in many organisms and have been used to insert transgenes in a variety of species. Here we describe the phiC31 integrase approach to make transgenic Xenopus laevis embryos.


Radiation Research | 2017

Consuming a Ketogenic Diet while Receiving Radiation and Chemotherapy for Locally Advanced Lung Cancer and Pancreatic Cancer: The University of Iowa Experience of Two Phase 1 Clinical Trials

Amir Zahra; Melissa A. Fath; Emyleigh Opat; Kranti A. Mapuskar; Sudershan K. Bhatia; Daniel C. Ma; Samuel N. Rodman; Travis P. Snyders; Catherine A. Chenard; Julie M. Eichenberger-Gilmore; Kellie L. Bodeker; Logan Ahmann; Brian J. Smith; Sandy Vollstedt; Heather Brown; Taher Abu Hejleh; Gerald H. Clamon; Daniel J. Berg; Luke I. Szweda; Douglas R. Spitz; John M. Buatti; Bryan G. Allen

Ketogenic diets are low in carbohydrates and high in fat, which forces cells to rely more heavily upon mitochondrial oxidation of fatty acids for energy. Relative to normal cells, cancer cells are believed to exist under a condition of chronic mitochondrial oxidative stress that is compensated for by increases in glucose metabolism to generate reducing equivalents. In this study we tested the hypothesis that a ketogenic diet concurrent with radiation and chemotherapy would be clinically tolerable in locally advanced non-small cell lung cancer (NSCLC) and pancreatic cancer and could potentially exploit cancer cell oxidative metabolism to improve therapeutic outcomes. Mice bearing MIA PaCa-2 pancreatic cancer xenografts were fed either a ketogenic diet or standard rodent chow, treated with conventionally fractionated radiation (2 Gy/fraction), and tumor growth rates were assessed daily. Tumors were assessed for immunoreactive 4-hydroxy-2-nonenal-(4HNE)-modfied proteins as a marker of oxidative stress. Based on this and another previously published preclinical study, phase 1 clinical trials in locally advanced NSCLC and pancreatic cancer were initiated, combining standard radiation and chemotherapy with a ketogenic diet for six weeks (NSCLC) or five weeks (pancreatic cancer). The xenograft experiments demonstrated prolonged survival and increased 4HNE-modfied proteins in animals consuming a ketogenic diet combined with radiation compared to radiation alone. In the phase 1 clinical trial, over a period of three years, seven NSCLC patients enrolled in the study. Of these, four were unable to comply with the diet and withdrew, two completed the study and one was withdrawn due to a dose-limiting toxicity. Over the same time period, two pancreatic cancer patients enrolled in the trial. Of these, one completed the study and the other was withdrawn due to a dose-limiting toxicity. The preclinical experiments demonstrate that a ketogenic diet increases radiation sensitivity in a pancreatic cancer xenograft model. However, patients with locally advanced NSCLC and pancreatic cancer receiving concurrent radiotherapy and chemotherapy had suboptimal compliance to the oral ketogenic diet and thus, poor tolerance.

Collaboration


Dive into the Bryan G. Allen's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge