Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Garry R. Buettner is active.

Publication


Featured researches published by Garry R. Buettner.


Free Radical Biology and Medicine | 2001

Redox environment of the cell as viewed through the redox state of the glutathione disulfide/glutathione couple

Freya Q. Schafer; Garry R. Buettner

Redox state is a term used widely in the research field of free radicals and oxidative stress. Unfortunately, it is used as a general term referring to relative changes that are not well defined or quantitated. In this review we provide a definition for the redox environment of biological fluids, cell organelles, cells, or tissue. We illustrate how the reduction potential of various redox couples can be estimated with the Nernst equation and show how pH and the concentrations of the species comprising different redox couples influence the reduction potential. We discuss how the redox state of the glutathione disulfide-glutathione couple (GSSG/2GSH) can serve as an important indicator of redox environment. There are many redox couples in a cell that work together to maintain the redox environment; the GSSG/2GSH couple is the most abundant redox couple in a cell. Changes of the half-cell reduction potential (E(hc)) of the GSSG/2GSH couple appear to correlate with the biological status of the cell: proliferation E(hc) approximately -240 mV; differentiation E(hc) approximately -200 mV; or apoptosis E(hc) approximately -170 mV. These estimates can be used to more fully understand the redox biochemistry that results from oxidative stress. These are the first steps toward a new quantitative biology, which hopefully will provide a rationale and understanding of the cellular mechanisms associated with cell growth and development, signaling, and reductive or oxidative stress.


Free Radical Biology and Medicine | 1987

Spin Trapping: ESR parameters of spin adducts 1474 1528V

Garry R. Buettner

Spin trapping has become a valuable tool for the study of free radicals in biology and medicine. The electron spin resonance hyperfine splitting constants of spin adducts of interest in this area are tabulated. The entries also contain a brief comment on the source of the radical trapped.


Biochemical and Biophysical Research Communications | 1978

Considerations in the spin trapping of superoxide and hydroxyl radical in aqueous systems using 5,5-dimethyl-1-pyrroline-1-oxide☆

Garry R. Buettner; Larry W. Oberley

Abstract The superoxide radical spin adduct of the spin trap 5,5-dimethyl-1-pyrroline-1-oxide was found to be relatively unstable in aqueous solution. The half-life of the electron spin resonance signal is approximately 80 sec at pH 6 and only about 35 sec at pH 8. These observations as well as the possible reaction products of O 2 • that may develop in the time course of an experiment, must be considered when planning or interpreting data from a spin trapping experiment.


Proceedings of the National Academy of Sciences of the United States of America | 2007

Ascorbate in pharmacologic concentrations selectively generates ascorbate radical and hydrogen peroxide in extracellular fluid in vivo

Qi Chen; Michael Graham Espey; Andrew Y. Sun; Je-Hyuk Lee; Murali C. Krishna; Emily Shacter; Peter L. Choyke; Chaya Pooput; Kenneth L. Kirk; Garry R. Buettner; Mark Levine

Ascorbate (ascorbic acid, vitamin C), in pharmacologic concentrations easily achieved in humans by i.v. administration, selectively kills some cancer cells but not normal cells. We proposed that pharmacologic ascorbate is a prodrug for preferential steady-state formation of ascorbate radical (Asc•−) and H2O2 in the extracellular space compared with blood. Here we test this hypothesis in vivo. Rats were administered parenteral (i.v. or i.p.) or oral ascorbate in typical human pharmacologic doses (≈0.25–0.5 mg per gram of body weight). After i.v. injection, ascorbate baseline concentrations of 50–100 μM in blood and extracellular fluid increased to peaks of >8 mM. After i.p. injection, peaks approached 3 mM in both fluids. By gavage, the same doses produced ascorbate concentrations of <150 μM in both fluids. In blood, Asc•− concentrations measured by EPR were undetectable with oral administration and always <50 nM with parenteral administration, even when corresponding ascorbate concentrations were >8 mM. After parenteral dosing, Asc•− concentrations in extracellular fluid were 4- to 12-fold higher than those in blood, were as high as 250 nM, and were a function of ascorbate concentrations. By using the synthesized probe peroxyxanthone, H2O2 in extracellular fluid was detected only after parenteral administration of ascorbate and when Asc•− concentrations in extracellular fluid exceeded 100 nM. The data show that pharmacologic ascorbate is a prodrug for preferential steady-state formation of Asc•− and H2O2 in the extracellular space but not blood. These data provide a foundation for pursuing pharmacologic ascorbate as a prooxidant therapeutic agent in cancer and infections.


Biochimica et Biophysica Acta | 2012

Ascorbic acid: Chemistry, biology and the treatment of cancer

Juan Du; Joseph J. Cullen; Garry R. Buettner

Since the discovery of vitamin C, the number of its known biological functions is continually expanding. Both the names ascorbic acid and vitamin C reflect its antiscorbutic properties due to its role in the synthesis of collagen in connective tissues. Ascorbate acts as an electron-donor keeping iron in the ferrous state thereby maintaining the full activity of collagen hydroxylases; parallel reactions with a variety of dioxygenases affect the expression of a wide array of genes, for example via the HIF system, as well as via the epigenetic landscape of cells and tissues. In fact, all known physiological and biochemical functions of ascorbate are due to its action as an electron donor. The ability to donate one or two electrons makes AscH(-) an excellent reducing agent and antioxidant. Ascorbate readily undergoes pH-dependent autoxidation producing hydrogen peroxide (H(2)O(2)). In the presence of catalytic metals this oxidation is accelerated. In this review, we show that the chemical and biochemical nature of ascorbate contribute to its antioxidant as well as its prooxidant properties. Recent pharmacokinetic data indicate that intravenous (i.v.) administration of ascorbate bypasses the tight control of the gut producing highly elevated plasma levels; ascorbate at very high levels can act as prodrug to deliver a significant flux of H(2)O(2) to tumors. This new knowledge has rekindled interest and spurred new research into the clinical potential of pharmacological ascorbate. Knowledge and understanding of the mechanisms of action of pharmacological ascorbate bring a rationale to its use to treat disease especially the use of i.v. delivery of pharmacological ascorbate as an adjuvant in the treatment of cancer.


Free Radical Biology and Medicine | 1993

INTERACTION OF VITAMIN C AND VITAMIN E DURING FREE RADICAL STRESS IN PLASMA: AN ESR STUDY

Mukesh K. Sharma; Garry R. Buettner

To study the interaction of the antioxidant vitamins C and E in a biological system, we used electron spin resonance (ESR) spectroscopy to make serial measurements of ascorbate and tocopheroxyl free radicals in plasma subjected to continuous free radical-mediated oxidative stress. Upon initiation of a continuous oxidative stress, we observed an immediate increase in the concentration of ascorbate radical, which reached a peak, and then steadily declined. Only after the virtual disappearance of the ascorbate radical did we observe the appearance of the tocopheroxyl radical. These data are consistent with the hypothesis that ascorbate is the terminal small-molecule antioxidant in biological systems. This is the first experimental demonstration that the predicted thermodynamic hierarchy of ascorbate, alpha-tocopherol, and their free radicals holds in a biological system containing endogenous levels of these antioxidant vitamins.


Free Radical Biology and Medicine | 1999

IRON AND DIOXYGEN CHEMISTRY IS AN IMPORTANT ROUTE TO INITIATION OF BIOLOGICAL FREE RADICAL OXIDATIONS: AN ELECTRON PARAMAGNETIC RESONANCE SPIN TRAPPING STUDY

Steven Y. Qian; Garry R. Buettner

Iron can be a detrimental catalyst in biological free radical oxidations. Because of the high physiological ratio of [O2]/[H2O2] (> or = 10(3)), we hypothesize that the Fenton reaction with pre-existing H2O2 is only a minor initiator of free radical oxidations and that the major initiators of biological free radical oxidations are the oxidizing species formed by the reaction of Fe2+ with dioxygen. We have employed electron paramagnetic resonance spin trapping to examine this hypothesis. Free radical oxidation of: 1) chemical (ethanol, dimethyl sulfoxide); 2) biochemical (glucose, glyceraldehyde); and 3) cellular (L1210 murine leukemia cells) targets were examined when subjected to an aerobic Fenton (Fe2+ + H2O2 + O2) or an aerobic (Fe2+ + O2) system. As anticipated, the Fenton reaction initiates radical formation in all the above targets. Without pre-existing H2O2, however, Fe2+ and O2 also induce substantial target radical formation. Under various experimental ratios of [O2]/[H2O2] (1-100 with [O2] approximately 250 microM), we compared the radical yield from the Fenton reaction vs. the radical yield from Fe2+ + O2 reactions. When [O2]/[H2O2] < 10, the Fenton reaction dominates target molecule radical formation; however, production of target-molecule radicals via the Fenton reaction is minor when [O2]/[H2O2] > or = 100. Interestingly, when L1210 cells are the oxidation targets, Fe2+ + O2 is observed to be responsible for formation of nearly all of the cell-derived radicals detected, no matter the ratio of [O2]/[H2O2]. Our data demonstrate that when [O2]/[H2O2] > or = 100, Fe2+ + O2 chemistry is an important route to initiation of detrimental biological free radical oxidations.


Photochemistry and Photobiology | 1994

Ultraviolet light-induced free radical formation in skin: an electron paramagnetic resonance study.

Beth Anne Jurkiewicz; Garry R. Buettner

It has been suggested that ultraviolet light induces free radical formation in skin, leading to photoaging and cancer. We have demonstrated by electron paramagnetic resonance that the ascorbate free radical is naturally present in unexposed skin at a very low steady state level. When a section of SKH‐1 hairless mouse skin in an EPR cavity is exposed to UV light (4,500 J m−2−1, Xe lamp, 305 nm cutoff and IR filters), the ascorbate free radical signal intensity increases. These results indicate that UV light increases free radical oxidative stress, consistent with ascorbates role as the terminal, small‐molecule antioxidant. The initial radicals produced by UV light would have very short lifetimes at room temperature; thus, we have applied EPR spin trapping techniques to detect these radicals. Using α‐[4‐pyridyl 1‐oxide]‐N‐tert‐butyl nitrone (POBN), we have for the first time spin trapped a UV light‐produced carbon‐centered free radical from intact skin. The EPR spectra exhibited hyperfine splittings that are characteristic of POBN/alkyl radicals, aN= 15.56 G and aH= 2.70 G, possibly generated from membrane lipids as a result of β‐scission of lipid alkoxyl radicals. Iron can act as a catalyst for free radical oxidative reactions; chronic exposure of skin to UV radiation causes increased iron deposition. Using our spin trapping system, we have shown that topical application of the iron‐chelator, Desferal, to a section of skin reduces the UV light‐induced POBN adduct radical signal. These results provide direct evidence for free radical generation and a role for iron in UV light‐induced dermatopathology. We suggest that iron chelators can serve as photoprotective agents by preventing these oxidations.


Journal of Biological Chemistry | 2005

Mitochondrial and H2O2 Mediate Glucose Deprivation-induced Stress in Human Cancer Cells

Iman M. Ahmad; Nukhet Aykin-Burns; Julia E. Sim; Susan A. Walsh; Garry R. Buettner; Sujatha Venkataraman; Michael A. Mackey; Shawn W. Flanagan; Larry W. Oberley; Douglas R. Spitz

The hypothesis that glucose deprivation-induced cytotoxicity in transformed human cells is mediated by mitochondrial \batchmode \documentclass[fleqn,10pt,legalpaper]{article} \usepackage{amssymb} \usepackage{amsfonts} \usepackage{amsmath} \pagestyle{empty} \begin{document} \(\mathrm{O}_{2}^{{\bar{{\cdot}}}}\) \end{document} and H2O2 was first tested by exposing glucose-deprived SV40-transformed human fibroblasts (GM00637G) to electron transport chain blockers (ETCBs) known to increase mitochondrial \batchmode \documentclass[fleqn,10pt,legalpaper]{article} \usepackage{amssymb} \usepackage{amsfonts} \usepackage{amsmath} \pagestyle{empty} \begin{document} \(\mathrm{O}_{2}^{{\bar{{\cdot}}}}\) \end{document} and H2O2 production (antimycin A (AntA), myxothiazol (Myx), or rotenone (Rot)). Glucose deprivation (2–8 h) in the presence of ETCBs enhanced parameters indicative of oxidative stress (i.e. GSSG and steady-state levels of oxygen-centered radicals) as well as cytotoxicity. Glucose deprivation in the presence of AntA also significantly enhanced cytotoxicity and parameters indicative of oxidative stress in several different human cancer cell lines (PC-3, DU145, MDA-MB231, and HT-29). In addition, human osteosarcoma cells lacking functional mitochondrial electron transport chains (rho(0)) were resistant to glucose deprivation-induced cytotoxicity and oxidative stress in the presence of AntA. In the absence of ETCBs, aminotriazole-mediated inactivation of catalase in PC-3 cells demonstrated increases in intracellular steady-state levels of H2O2 during glucose deprivation. Finally, in the absence of ETCBs, overexpression of manganese containing superoxide dismutase and/or mitochondrial targeted catalase using adenoviral vectors significantly protected PC-3 cells from toxicity and oxidative stress induced by glucose deprivation with expression of both enzymes providing greater protection than was seen with either alone. Overall, these findings strongly support the hypothesis that mitochondrial \batchmode \documentclass[fleqn,10pt,legalpaper]{article} \usepackage{amssymb} \usepackage{amsfonts} \usepackage{amsmath} \pagestyle{empty} \begin{document} \(\mathrm{O}_{2}^{{\bar{{\cdot}}}}\) \end{document} and H2O2 significantly contribute to glucose deprivation-induced cytotoxicity and metabolic oxidative stress in human cancer cells.


FEBS Letters | 1998

Increased flux of free radicals in cells subjected to hyperthermia: detection by electron paramagnetic resonance spin trapping

Shawn W. Flanagan; Pope L. Moseley; Garry R. Buettner

It has been hypothesized that hyperthermia promotes oxygen‐centered free radical formation in cells; however, to date there is no direct evidence of this heat‐induced increase in oxygen free radical flux. Using electron paramagnetic resonance (EPR) spin trapping, we sought direct evidence for free radical generation during hyperthermia in intact, functioning cells. Rat intestinal epithelial cell monolayers were exposed to 45°C for 20 min, after which the nitrone spin trap 5,5‐dimethyl‐1‐pyrroline N‐oxide (DMPO) was added. Compared to control cells at 37°C, heat‐exposed cells had increased free radical EPR signals, consistent with the formation of DMPO/⋅OH (aN=aH=14.9 G). These findings indicate that heat increases the flux of cellular free radicals and support the hypothesis that increased generation of oxygen‐centered free radicals and the resultant oxidative stress may mediate in part, heat‐induced cellular damage.

Collaboration


Dive into the Garry R. Buettner's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge