Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Bryan Hansen is active.

Publication


Featured researches published by Bryan Hansen.


Applied and Environmental Microbiology | 2011

Isolation from Animal Tissue and Genetic Transformation of Coxiella burnetii Are Facilitated by an Improved Axenic Growth Medium

Anders Omsland; Paul A. Beare; Joshua Hill; Diane C. Cockrell; Dale Howe; Bryan Hansen; James E. Samuel; Robert A. Heinzen

ABSTRACT We recently described acidified citrate cysteine medium (ACCM), which supports host cell-free (axenic) growth of Coxiella burnetii. After 6 days of incubation, greater than 3 logs of growth was achieved with the avirulent Nine Mile phase II (NMII) strain. Here, we describe modified ACCM and culture conditions that support improved growth of C. burnetii and their use in genetic transformation and pathogen isolation from tissue samples. ACCM was modified by replacing fetal bovine serum with methyl-β-cyclodextrin to generate ACCM-2. Cultivation of NMII in ACCM-2 with moderate shaking and in 2.5% oxygen yielded 4 to 5 logs of growth over 7 days. Similar growth was achieved with the virulent Nine Mile phase I and G isolates of C. burnetii. Colonies that developed after 6 days of growth in ACCM-2 agarose were approximately 0.5 mm in diameter, roughly 5-fold larger than those formed in ACCM agarose. By electron microscopy, colonies consisted primarily of the C. burnetii small cell variant morphological form. NMII was successfully cultured in ACCM-2 when medium was inoculated with as little as 10 genome equivalents contained in tissue homogenates from infected SCID mice. A completely axenic C. burnetii genetic transformation system was developed using ACCM-2 that allowed isolation of transformants in about 2 1/2 weeks. Transformation experiments demonstrated clonal populations in colonies and a transformation frequency of approximately 5 × 10−5. Cultivation in ACCM-2 will accelerate development of C. burnetii genetic tools and provide a sensitive means of primary isolation of the pathogen from Q fever patients.


Journal of Bacteriology | 2009

Characterization of a Coxiella burnetii ftsZ Mutant Generated by Himar1 Transposon Mutagenesis

Paul A. Beare; Dale Howe; Diane C. Cockrell; Anders Omsland; Bryan Hansen; Robert A. Heinzen

Coxiella burnetii is a gram-negative obligate intracellular bacterium and the causative agent of human Q fever. The lack of methods to genetically manipulate C. burnetii significantly impedes the study of this organism. We describe here the cloning and characterization of a C. burnetii ftsZ mutant generated by mariner-based Himar1 transposon (Tn) mutagenesis. C. burnetii was coelectroporated with a plasmid encoding the Himar1 C9 transposase variant and a plasmid containing a Himar1 transposon encoding chloramphenicol acetyltransferase, mCherry fluorescent protein, and a ColE1 origin of replication. Vero cells were infected with electroporated C. burnetii and transformants scored as organisms replicating in the presence of chloramphenicol and expressing mCherry. Southern blot analysis revealed multiple transpositions in the C. burnetii genome and rescue cloning identified 30 and 5 insertions in coding and noncoding regions, respectively. Using micromanipulation, a C. burnetii clone was isolated containing a Tn insertion within the C terminus of the cell division gene ftsZ. The ftsZ mutant had a significantly lower growth rate than wild-type bacteria and frequently appeared as filamentous forms displaying incomplete cell division septa. The latter phenotype correlated with a deficiency in generating infectious foci on a per-genome basis compared to wild-type organisms. The mutant FtsZ protein was also unable to bind the essential cell division protein FtsA. This is the first description of C. burnetii harboring a defined gene mutation generated by genetic transformation.


Autophagy | 2012

Cytosolic clearance of replication-deficient mutants reveals Francisella tularensis interactions with the autophagic pathway.

Audrey Chong; Tara D. Wehrly; Robert Child; Bryan Hansen; Seungmin Hwang; Herbert W. Virgin; Jean Celli

Cytosolic bacterial pathogens must evade intracellular innate immune recognition and clearance systems such as autophagy to ensure their survival and proliferation. The intracellular cycle of the bacterium Francisella tularensis is characterized by rapid phagosomal escape followed by extensive proliferation in the macrophage cytoplasm. Cytosolic replication, but not phagosomal escape, requires the locus FTT0369c, which encodes the dipA gene (deficient in intracellular replication A). Here, we show that a replication-deficient, ∆dipA mutant of the prototypical SchuS4 strain is eventually captured from the cytosol of murine and human macrophages into double-membrane vacuoles displaying the late endosomal marker, LAMP1, and the autophagy-associated protein, LC3, coinciding with a reduction in viable intracellular bacteria. Capture of SchuS4ΔdipA was not dipA-specific as other replication-deficient bacteria, such as chloramphenicol-treated SchuS4 and a purine auxotroph mutant SchuS4ΔpurMCD, were similarly targeted to autophagic vacuoles. Vacuoles containing replication-deficient bacteria were labeled with ubiquitin and the autophagy receptors SQSTM1/p62 and NBR1, and their formation was decreased in macrophages from either ATG5-, LC3B- or SQSTM1-deficient mice, indicating recognition by the ubiquitin-SQSTM1-LC3 pathway. While a fraction of both the wild-type and the replication-impaired strains were ubiquitinated and recruited SQSTM1, only the replication-defective strains progressed to autophagic capture, suggesting that wild-type Francisella interferes with the autophagic cascade. Survival of replication-deficient strains was not restored in autophagy-deficient macrophages, as these bacteria died in the cytosol prior to autophagic capture. Collectively, our results demonstrate that replication-impaired strains of Francisella are cleared by autophagy, while replication-competent bacteria seem to interfere with autophagic recognition, therefore ensuring survival and proliferation.


Current protocols in microbiology | 2012

Scanning Electron Microscopy

Elizabeth R. Fischer; Bryan Hansen; Vinod Nair; Forrest H. Hoyt; David W. Dorward

Scanning electron microscopy (SEM) remains distinct in its ability to allow topographical visualization of structures. Key elements to consider for successful examination of biological specimens include appropriate preparative and imaging techniques. Chemical processing induces structural artifacts during specimen preparation, and several factors need to be considered when selecting fixation protocols to reduce these effects while retaining structures of interest. Particular care for proper dehydration of specimens is essential to minimize shrinkage and is necessary for placement under the high‐vacuum environment required for routine operation of standard SEMs. Choice of substrate for mounting and coating specimens can reduce artifacts known as charging, and a basic understanding of microscope settings can optimize parameters to achieve desired results. This unit describes fundamental techniques and tips for routine specimen preparation for a variety of biological specimens, preservation of labile or fragile structures, immune‐labeling strategies, and microscope imaging parameters for optimal examination by SEM. Curr. Protoc. Microbiol. 25:2B.2.1‐2B.2.47.


Cellular Microbiology | 2014

The Francisella O-antigen mediates survival in the macrophage cytosol via autophagy avoidance.

Elizabeth Di Russo Case; Audrey Chong; Tara D. Wehrly; Bryan Hansen; Robert Child; Seungmin Hwang; Herbert W. Virgin; Jean Celli

Autophagy is a key innate immune response to intracellular parasites that promotes their delivery to degradative lysosomes following detection in the cytosol or within damaged vacuoles. Like Listeria and Shigella, which use specific mechanisms to avoid autophagic detection and capture, the bacterial pathogen Francisella tularensis proliferates within the cytosol of macrophages without demonstrable control by autophagy. To examine how Francisella evades autophagy, we screened a library of F. tularensis subsp. tularensis Schu S4 HimarFT transposon mutants in GFP‐LC3‐expressing murine macrophages by microscopy for clones localized within autophagic vacuoles after phagosomal escape. Eleven clones showed autophagic capture at 6 h post‐infection, whose HimarFT insertions clustered to fourgenetic loci involved in lipopolysaccharidic and capsular O‐antigen biosynthesis. Consistent with the HimarFT mutants, in‐frame deletion mutants of two representative loci, FTT1236 and FTT1448c (manC), lacking both LPS and capsular O‐antigen, underwent phagosomal escape but were cleared from the host cytosol. Unlike wild‐type Francisella, the O‐antigen deletion mutants were ubiquitinated, and recruited the autophagy adaptor p62/SQSTM1 and LC3 prior to cytosolic clearance. Autophagy‐deficient macrophages partially supported replication of both mutants, indicating that O‐antigen‐lacking Francisella are controlled by autophagy. These data demonstrate the intracellular protective role of this bacterial surface polysaccharide against autophagy.


PLOS Pathogens | 2013

Bacterial Colonization of Host Cells in the Absence of Cholesterol

Stacey D. Gilk; Diane C. Cockrell; Courtney Luterbach; Bryan Hansen; Leigh A. Knodler; J. Antonio Ibarra; Olivia Steele-Mortimer; Robert A. Heinzen

Reports implicating important roles for cholesterol and cholesterol-rich lipid rafts in host-pathogen interactions have largely employed sterol sequestering agents and biosynthesis inhibitors. Because the pleiotropic effects of these compounds can complicate experimental interpretation, we developed a new model system to investigate cholesterol requirements in pathogen infection utilizing DHCR24−/− mouse embryonic fibroblasts (MEFs). DHCR24−/− MEFs lack the Δ24 sterol reductase required for the final enzymatic step in cholesterol biosynthesis, and consequently accumulate desmosterol into cellular membranes. Defective lipid raft function by DHCR24−/− MEFs adapted to growth in cholesterol-free medium was confirmed by showing deficient uptake of cholera-toxin B and impaired signaling by epidermal growth factor. Infection in the absence of cholesterol was then investigated for three intracellular bacterial pathogens: Coxiella burnetii, Salmonella enterica serovar Typhimurium, and Chlamydia trachomatis. Invasion by S. Typhimurium and C. trachomatis was unaltered in DHCR24−/− MEFs. In contrast, C. burnetii entry was significantly decreased in −cholesterol MEFs, and also in +cholesterol MEFs when lipid raft-associated αVβ3 integrin was blocked, suggesting a role for lipid rafts in C. burnetii uptake. Once internalized, all three pathogens established their respective vacuolar niches and replicated normally. However, the C. burnetii-occupied vacuole within DHCR24−/− MEFs lacked the CD63-postive material and multilamellar membranes typical of vacuoles formed in wild type cells, indicating cholesterol functions in trafficking of multivesicular bodies to the pathogen vacuole. These data demonstrate that cholesterol is not essential for invasion and intracellular replication by S. Typhimurium and C. trachomatis, but plays a role in C. burnetii-host cell interactions.


PLOS ONE | 2012

Characterization of the Chromosome 4 Genes That Affect Fluconazole-Induced Disomy Formation in Cryptococcus neoformans

Popchai Ngamskulrungroj; Yun Chang; Bryan Hansen; Cliff Bugge; Elizabeth R. Fischer; Kyung J. Kwon-Chung

Heteroresistance in Cryptococcus neoformans is an intrinsic adaptive resistance to azoles and the heteroresistant phenotype is associated with disomic chromosomes. Two chromosome 1 (Chr1) genes, ERG11, the fluconazole target, and AFR1, a drug transporter, were reported as major factors in the emergence of Chr1 disomy. In the present study, we show Chr4 to be the second most frequently formed disomy at high concentrations of fluconazole (FLC) and characterize the importance of resident genes contributing to disomy formation. We deleted nine Chr4 genes presumed to have functions in ergosterol biosynthesis, membrane composition/integrity or drug transportation that could influence Chr4 disomy under FLC stress. Of these nine, disruption of three genes homologous to Sey1 (a GTPase), Glo3 and Gcs2 (the ADP-ribosylation factor GTPase activating proteins) significantly reduced the frequency of Chr4 disomy in heteroresistant clones. Furthermore, FLC resistant clones derived from sey1Δglo3Δ did not show disomy of either Chr4 or Chr1 but instead had increased the copy number of the genes proximal to ERG11 locus on Chr1. Since the three genes are critical for the integrity of endoplasmic reticulum (ER) in Saccharomyces cerevisiae, we used Sec61ß-GFP fusion as a marker to study the ER in the mutants. The cytoplasmic ER was found to be elongated in sey1Δ but without any discernable alteration in gcs2Δ and glo3Δ under fluorescence microscopy. The aberrant ER morphology of all three mutant strains, however, was discernable by transmission electron microscopy. A 3D reconstruction using Focused Ion Beam Scanning Electron Microscopy (FIB-SEM) revealed considerably reduced reticulation in the ER of glo3Δ and gcs2Δ strains. In sey1Δ, ER reticulation was barely detectable and cisternae were expanded extensively compared to the wild type strains. These data suggest that the genes required for maintenance of ER integrity are important for the formation of disomic chromosomes in C. neoformans under azole stress.


Journal of Biological Chemistry | 2013

Engineering Anthrax Toxin Variants That Exclusively Form Octamers and Their Application to Targeting Tumors

Damilola D. Phillips; Rasem J. Fattah; Devorah Crown; Yi Zhang; Shihui Liu; Mahtab Moayeri; Elizabeth R. Fischer; Bryan Hansen; Rodolfo Ghirlando; Ekaterina M. Nestorovich; Alexander N. Wein; Lacy Simons; Stephen H. Leppla; Clinton E. Leysath

Background: Anthrax toxin protective antigen (PA) forms heptameric or octameric oligomers after proteolytic activation. Results: We engineered two PA variants that form active octamers only when both versions are present. Conclusion: These PA variants enlarged the therapeutic window when used to target tumors compared with previous systems. Significance: This is the first method to generate a pure pool of octameric PA oligomer. Anthrax toxin protective antigen (PA) delivers its effector proteins into the host cell cytosol through formation of an oligomeric pore, which can assume heptameric or octameric states. By screening a highly directed library of PA mutants, we identified variants that complement each other to exclusively form octamers. These PA variants were individually nontoxic and demonstrated toxicity only when combined with their complementary partner. We then engineered requirements for activation by matrix metalloproteases and urokinase plasminogen activator into two of these variants. The resulting therapeutic toxin specifically targeted cells expressing both tumor associated proteases and completely stopped tumor growth in mice when used at a dose far below that which caused toxicity. This scheme for obtaining intercomplementing subunits can be employed with other oligomeric proteins and potentially has wide application.


Cellular Microbiology | 2014

The Annexin A2/p11 complex is required for efficient invasion of Salmonella Typhimurium in epithelial cells

Carrie Jolly; Seth Winfree; Bryan Hansen; Olivia Steele-Mortimer

The facultative intracellular pathogen, Salmonella enterica, triggers its own uptake into non‐phagocytic epithelial cells. Invasion is dependent on a type 3 secretion system (T3SS), which delivers a cohort of effector proteins across the plasma membrane where they induce dynamic actin‐driven ruffling of the membrane and ultimately, internalization of the bacteria into a modified phagosome. In eukaryotic cells, the calcium‐ and phospholipid‐binding protein Annexin A2 (AnxA2) functions as a platform for actin remodelling in the vicinity of dynamic cellular membranes. AnxA2 is mostly found in a stable heterotetramer, with p11, which can interact with other proteins such as the giant phosphoprotein AHNAK. We show here that AnxA2, p11 and AHNAK are required for T3SS‐mediated Salmonella invasion of cultured epithelial cells and that the T3SS effector SopB is required for recruitment of AnxA2 and AHNAK to Salmonella invasion sites. Altogether this work shows that, in addition to targeting Rho‐family GTPases, Salmonella can intersect the host cell actin pathway via AnxA2.


Journal of Microbiological Methods | 2014

Developmental transitions of Coxiella burnetii grown in axenic media.

Kelsi M. Sandoz; Daniel E. Sturdevant; Bryan Hansen; Robert A. Heinzen

Coxiella burnetii undergoes a biphasic developmental cycle within its host cell that generates morphologically and physiologically distinct large cell variants (LCV) and small cell variants (SCV). During the lag phase of the C. burnetii growth cycle, non-replicating SCV differentiate into replicating LCV that in turn differentiate back into SCV during stationary phase. Nearly homogeneous SCV are observed in infected Vero cells after extended incubation (21 to 28days). In the current study, we sought to establish whether C. burnetii developmental transitions in host cells are recapitulated during host cell-free (axenic) growth in first and second generation acidified citrate cysteine media (ACCM-1 and ACCM-2, respectively). We show that ACCM-2 supported developmental transitions and viability. Although ACCM-1 also supported SCV to LCV transition, LCV to SCV transition did not occur after extended incubation (21days). Instead, C. burnetii exhibited a ghost-like appearance with bacteria containing condensed chromatin but otherwise devoid of cytoplasmic content. This phenotype correlated with a near total loss in viability between 14 and 21days of cultivation. Transcriptional profiling of C. burnetii following 14days of incubation revealed elevated expression of oxidative stress genes in ACCM-1 cultivated bacteria. ACCM-2 differs from ACCM-1 by the substitution of methyl-β-cyclodextrin (Mβ-CD) for fetal bovine serum. Addition of Mβ-CD to ACCM-1 at 7days post-inoculation rescued C. burnetii viability and lowered expression of oxidative stress genes. Thus, Mβ-CD appears to alleviate oxidative stress in ACCM-2 to result in C. burnetii developmental transitions and viability that mimic host cell-cultivated organisms. Axenic cultivation of C. burnetii in ACCM-2 and new methods of genetic manipulation now allow investigation of the molecular basis of C. burnetii biphasic development.

Collaboration


Dive into the Bryan Hansen's collaboration.

Top Co-Authors

Avatar

Elizabeth R. Fischer

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Robert A. Heinzen

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Paul A. Beare

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Vinod Nair

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Daniel E. Sturdevant

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Diane C. Cockrell

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Herbert W. Virgin

Washington University in St. Louis

View shared research outputs
Top Co-Authors

Avatar

Jean Celli

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Robert Child

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge