Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Vinod Nair is active.

Publication


Featured researches published by Vinod Nair.


Antimicrobial Agents and Chemotherapy | 2012

SQ109 Targets MmpL3, a Membrane Transporter of Trehalose Monomycolate Involved in Mycolic Acid Donation to the Cell Wall Core of Mycobacterium tuberculosis

Kapil Tahlan; Regina Wilson; David B. Kastrinsky; Kriti Arora; Vinod Nair; Elizabeth R. Fischer; S. Whitney Barnes; John R. Walker; David Alland; Clifton E. Barry; Helena I. Boshoff

ABSTRACT SQ109, a 1,2-diamine related to ethambutol, is currently in clinical trials for the treatment of tuberculosis, but its mode of action remains unclear. Here, we demonstrate that SQ109 disrupts cell wall assembly, as evidenced by macromolecular incorporation assays and ultrastructural analyses. SQ109 interferes with the assembly of mycolic acids into the cell wall core of Mycobacterium tuberculosis, as bacilli exposed to SQ109 show immediate inhibition of trehalose dimycolate (TDM) production and fail to attach mycolates to the cell wall arabinogalactan. These effects were not due to inhibition of mycolate synthesis, since total mycolate levels were unaffected, but instead resulted in the accumulation of trehalose monomycolate (TMM), the precursor of TDM and cell wall mycolates. In vitro assays using purified enzymes showed that this was not due to inhibition of the secreted Ag85 mycolyltransferases. We were unable to achieve spontaneous generation of SQ109-resistant mutants; however, analogs of this compound that resulted in similar shutdown of TDM synthesis with concomitant TMM accumulation were used to spontaneously generate resistant mutants that were also cross-resistant to SQ109. Whole-genome sequencing of these mutants showed that these all had mutations in the essential mmpL3 gene, which encodes a transmembrane transporter. Our results suggest that MmpL3 is the target of SQ109 and that MmpL3 is a transporter of mycobacterial TMM.


Infection and Immunity | 2008

The Early Phagosomal Stage of Francisella tularensis Determines Optimal Phagosomal Escape and Francisella Pathogenicity Island Protein Expression

Audrey Chong; Tara D. Wehrly; Vinod Nair; Elizabeth R. Fischer; Jeffrey R. Barker; Karl E. Klose; Jean Celli

ABSTRACT Francisella tularensis is an intracellular pathogen that can survive and replicate within macrophages. Following phagocytosis and transient interactions with the endocytic pathway, F. tularensis rapidly escapes from its original phagosome into the macrophage cytoplasm, where it eventually replicates. To examine the importance of the nascent phagosome for the Francisella intracellular cycle, we have characterized early trafficking events of the F. tularensis subsp. tularensis strain Schu S4 in a murine bone marrow-derived macrophage model. Here we show that early phagosomes containing Schu S4 transiently interact with early and late endosomes and become acidified before the onset of phagosomal disruption. Inhibition of endosomal acidification with the vacuolar ATPase inhibitor bafilomycin A1 or concanamycin A prior to infection significantly delayed but did not block phagosomal escape and cytosolic replication, indicating that maturation of the early Francisella-containing phagosome (FCP) is important for optimal phagosomal escape and subsequent intracellular growth. Further, Francisella pathogenicity island (FPI) protein expression was induced during early intracellular trafficking events. Although inhibition of endosomal acidification mimicked the early phagosomal escape defects caused by mutation of the FPI-encoded IglCD proteins, it did not inhibit the intracellular induction of FPI proteins, demonstrating that this response is independent of phagosomal pH. Altogether, these results demonstrate that early phagosomal maturation is required for optimal phagosomal escape and that the early FCP provides cues other than intravacuolar pH that determine intracellular induction of FPI proteins.


Cellular Microbiology | 2009

Intracellular biology and virulence determinants of Francisella tularensis revealed by transcriptional profiling inside macrophages

Tara D. Wehrly; Audrey Chong; Kimmo Virtaneva; Dan E. Sturdevant; Robert Child; Jessica A. Edwards; Dedeke Brouwer; Vinod Nair; Elizabeth R. Fischer; Luke Wicke; Alissa J. Curda; John J. Kupko; Craig Martens; Deborah D. Crane; Catharine M. Bosio; Stephen F. Porcella; Jean Celli

The highly infectious bacterium Francisella tularensis is a facultative intracellular pathogen, whose virulence requires proliferation inside host cells, including macrophages. Here we have performed a global transcriptional profiling of the highly virulent F. tularensis ssp. tularensis Schu S4 strain during its intracellular cycle within primary murine macrophages, to characterize its intracellular biology and identify pathogenic determinants based on their intracellular expression profiles. Phagocytosed bacteria rapidly responded to their intracellular environment and subsequently altered their transcriptional profile. Differential gene expression profiles were revealed that correlated with specific intracellular locale of the bacteria. Upregulation of general and oxidative stress response genes was a hallmark of the early phagosomal and late endosomal stages, while induction of transport and metabolic genes characterized the cytosolic replication stage. Expression of the Francisella Pathogenicity Island (FPI) genes, which are required for intracellular proliferation, increased during the intracellular cycle. Similarly, 27 chromosomal loci encoding putative hypothetical, secreted, outer membrane proteins or transcriptional regulators were identified as upregulated. Among these, deletion of FTT0383, FTT0369c or FTT1676 abolished the ability of Schu S4 to survive or proliferate intracellularly and cause lethality in mice, therefore identifying novel determinants of Francisella virulence from their intracellular expression profile.


Proceedings of the National Academy of Sciences of the United States of America | 2012

Developmental stage-specific metabolic and transcriptional activity of Chlamydia trachomatis in an axenic medium

Anders Omsland; Janet Sager; Vinod Nair; Daniel E. Sturdevant; Ted Hackstadt

Chlamydia trachomatis is among the most clinically significant human pathogens, yet their obligate intracellular nature places severe restrictions upon research. Chlamydiae undergo a biphasic developmental cycle characterized by an infectious cell type known as an elementary body (EB) and an intracellular replicative form called a reticulate body (RB). EBs have historically been described as metabolically dormant. A cell-free (axenic) culture system was developed, which showed high levels of metabolic and biosynthetic activity from both EBs and RBs, although the requirements differed for each. EBs preferentially used glucose-6-phosphate as an energy source, whereas RBs required ATP. Both developmental forms showed increased activity when incubated under microaerobic conditions. Incorporation of isotopically labeled amino acids into proteins from both developmental forms indicated unique expression profiles, which were confirmed by genome-wide transcriptional analysis. The described axenic culture system will greatly enhance biochemical and physiological analyses of chlamydiae.


Molecular Microbiology | 2012

Meropenem inhibits D,D-carboxypeptidase activity in Mycobacterium tuberculosis

Pradeep Kumar; Kriti Arora; John R. Lloyd; Ill Young Lee; Vinod Nair; Elizabeth R. Fischer; Helena I. Boshoff; Clifton E. Barry

Carbapenems such as meropenem are being investigated for their potential therapeutic utility against highly drug‐resistant tuberculosis. These β‐lactams target the transpeptidases that introduce interpeptide cross‐links into bacterial peptidoglycan thereby controlling rigidity of the bacterial envelope. Treatment of Mycobacterium tuberculosis (Mtb) with the β‐lactamase inhibitor clavulanate together with meropenem resulted in rapid, polar, cell lysis releasing cytoplasmic contents. In Mtb it has been previously demonstrated that 3‐3 cross‐linkages [involving two diaminopimelate (DAP) molecules] predominate over 4‐3 cross‐linkages (involving one DAP and one D‐alanine) in stationary‐phase cells. We purified and analysed peptidoglycan from Mtb and found that 3‐3 cross‐linkages predominate throughout all growth phases and the ratio of 4‐3/3‐3 linkages does not vary significantly under any growth condition. Meropenem treatment was accompanied by a dramatic accumulation of unlinked pentapeptide stems with no change in the tetrapeptide pools, suggesting that meropenem inhibits both a D,D‐carboxypeptidase and an L,D‐transpeptidase. We purified a candidate D,D‐carboxypeptidase DacB2 and showed that meropenem indeed directly inhibits this enzyme by forming a stable adduct at the enzyme active site. These results suggest that the rapid lysis of meropenem‐treated cells is the result of synergistically inhibiting the transpeptidases that introduce 3,3‐cross‐links while simultaneously limiting the pool of available substrates available for cross‐linking.


Infection and Immunity | 2010

Burkholderia mallei Cluster 1 Type VI Secretion Mutants Exhibit Growth and Actin Polymerization Defects in RAW 264.7 Murine Macrophages

Mary N. Burtnick; David DeShazer; Vinod Nair; Frank C. Gherardini; Paul J. Brett

ABSTRACT Burkholderia mallei is a facultative intracellular pathogen that causes severe disease in animals and humans. Recent studies have shown that the cluster 1 type VI secretion system (T6SS-1) expressed by this organism is essential for survival in a hamster model of glanders. To better understand the role of T6SS-1 in the pathogenesis of disease, studies were initiated to examine the interactions of B. mallei tssE mutants with RAW 264.7 murine macrophages. Results obtained by utilizing modified gentamicin protection assays indicated that although the tssE mutants were able to survive within RAW 264.7 cells, significant growth defects were observed in comparison to controls. In addition, analysis of infected monolayers by differential interference contrast and fluorescence microscopy demonstrated that the tssE mutants lacked the ability to induce multinucleated giant cell formation. Via the use of fluorescence microscopy, tssE mutants were shown to undergo escape from lysosome-associated membrane protein 1-positive vacuoles. Curiously, however, following entry into the cytosol, the mutants exhibited actin polymerization defects resulting in inefficient intra- and intercellular spread characteristics. Importantly, all mutant phenotypes observed in this study could be restored by complementation. Based upon these findings, it appears that T6SS-1 plays a critical role in growth and actin-based motility following uptake of B. mallei by RAW 264.7 cells.


Infection and Immunity | 2008

Burkholderia pseudomallei Type III Secretion System Mutants Exhibit Delayed Vacuolar Escape Phenotypes in RAW 264.7 Murine Macrophages

Mary N. Burtnick; Paul J. Brett; Vinod Nair; Jonathan M. Warawa; Donald E. Woods; Frank C. Gherardini

ABSTRACT Burkholderia pseudomallei is a facultative intracellular pathogen capable of surviving and replicating within eukaryotic cells. Recent studies have shown that B. pseudomallei Bsa type III secretion system 3 (T3SS-3) mutants exhibit vacuolar escape and replication defects in J774.2 murine macrophages. In the present study, we characterized the interactions of a B. pseudomallei bsaZ mutant with RAW 264.7 murine macrophages. Following uptake, the mutant was found to survive and replicate within infected RAW 264.7 cells over an 18-h period. In addition, high levels of tumor necrosis factor alpha (TNF-α), interleukin-6 (IL-6), granulocyte-macrophage colony-stimulating factor (GM-CSF), and RANTES, but not IL-1α and IL-1β, were detected in culture supernatants harvested from infected monolayers. The subcellular location of B. pseudomallei within infected RAW 264.7 cells was determined, and as expected, the bsaZ mutant demonstrated early-vacuolar-escape defects. Interestingly, however, experiments also indicated that this mutant was capable of delayed vacuolar escape. Consistent with this finding, evidence of actin-based motility and multinucleated giant cell formation were observed between 12 and 18 h postinfection. Further studies demonstrated that a triple mutant defective in all three B. pseudomallei T3SSs exhibited the same phenotype as the bsaZ mutant, indicating that functional T3SS-1 and T3SS-2 did not appear to be responsible for the delayed escape phenotype in RAW 264.7 cells. Based upon these findings, it appears that B. pseudomallei may not require T3SS-1, -2, and -3 to facilitate survival, delayed vacuolar escape, and actin-based motility in activated RAW 264.7 macrophages.


Microbiology | 2010

Restricted cytosolic growth of Francisella tularensis subsp. tularensis by IFN-γ activation of macrophages

Jessica A. Edwards; Dedeke Rockx-Brouwer; Vinod Nair; Jean Celli

The intracellular bacterium Francisella tularensis ensures its survival and proliferation within phagocytes of the infected host through phagosomal escape and cytosolic replication, to cause the disease tularemia. The cytokine interferon-gamma (IFN-gamma) is important in controlling primary infections in vivo, and in vitro intracellular proliferation of Francisella in macrophages, but its actual effects on the intracellular cycle of the bacterium are ambiguous. Here, we have performed an extensive analysis of the intracellular fate of the virulent F. tularensis subsp. tularensis strain Schu S4 in primary IFN-gamma-activated murine and human macrophages to understand how this cytokine controls Francisella proliferation. In both murine bone marrow-derived macrophages (muBMMs) and human blood monocyte-derived macrophages (MDMs), IFN-gamma controlled bacterial proliferation. Schu S4 growth inhibition was not due to a defect in phagosomal escape, since bacteria disrupted their phagosomes with indistinguishable kinetics in both muBMMs and MDMs, regardless of their activation state. Rather, IFN-gamma activation restricted cytosolic replication of Schu S4 in a manner independent of reactive oxygen or nitrogen species. Hence, IFN-gamma induces phagocyte NADPH oxidase Phox- and inducible nitric oxide synthase (iNOS)-independent cytosolic effector mechanisms that restrict growth of virulent Francisella in macrophages.


PLOS ONE | 2014

Quantitative assessment of cytosolic Salmonella in epithelial cells.

Leigh A. Knodler; Vinod Nair; Olivia Steele-Mortimer

Within mammalian cells, Salmonella enterica serovar Typhimurium (S. Typhimurium) inhabits a membrane-bound vacuole known as the Salmonella-containing vacuole (SCV). We have recently shown that wild type S. Typhimurium also colonizes the cytosol of epithelial cells. Here we sought to quantify the contribution of cytosolic Salmonella to the total population over a time course of infection in different epithelial cell lines and under conditions of altered vacuolar escape. We found that the lysosomotropic agent, chloroquine, acts on vacuolar, but not cytosolic, Salmonella. After chloroquine treatment, vacuolar bacteria are not transcriptionally active or replicative and appear degraded. Using a chloroquine resistance assay, in addition to digitonin permeabilization, we found that S. Typhimurium lyses its nascent vacuole in numerous epithelial cell lines, albeit with different frequencies, and hyper-replication in the cytosol is also widespread. At later times post-infection, cytosolic bacteria account for half of the total population in some epithelial cell lines, namely HeLa and Caco-2 C2Bbe1. Both techniques accurately measured increased vacuole lysis in epithelial cells upon treatment with wortmannin. By chloroquine resistance assay, we also determined that Salmonella pathogenicity island-1 (SPI-1), but not SPI-2, the virulence plasmid nor the flagellar apparatus, was required for vacuolar escape and cytosolic replication in epithelial cells. Together, digitonin permeabilization and the chloroquine resistance assay will be useful, complementary tools for deciphering the mechanisms of SCV lysis and Salmonella replication in the epithelial cell cytosol.


Antimicrobial Agents and Chemotherapy | 2009

Staphylococcus aureus Mutant Screen Reveals Interaction of the Human Antimicrobial Peptide Dermcidin with Membrane Phospholipids

Min Li; Kevin Rigby; Yuping Lai; Vinod Nair; Andreas Peschel; Birgit Schittek; Michael Otto

ABSTRACT Antimicrobial peptides (AMPs) form an important part of the innate host defense. In contrast to most AMPs, human dermcidin has an anionic net charge. To investigate whether bacteria have developed specific mechanisms of resistance to dermcidin, we screened for mutants of the leading human pathogen, Staphylococcus aureus, with altered resistance to dermcidin. To that end, we constructed a plasmid for use in mariner-based transposon mutagenesis and developed a high-throughput cell viability screening method based on luminescence. In a large screen, we did not find mutants with strongly increased susceptibility to dermcidin, indicating that S. aureus has no specific mechanism of resistance to this AMP. Furthermore, we detected a mutation in a gene of unknown function that resulted in significantly increased resistance to dermcidin. The mutant strain had an altered membrane phospholipid pattern and showed decreased binding of dermcidin to the bacterial surface, indicating that dermcidin interacts with membrane phospholipids. The mode of this interaction was direct, as shown by assays of dermcidin binding to phospholipid preparations, and specific, as the resistance to other AMPs was not affected. Our findings indicate that dermcidin has an exceptional value for the human innate host defense and lend support to the idea that it evolved to evade bacterial resistance mechanisms targeted at the cationic character of most AMPs. Moreover, they suggest that the antimicrobial activity of dermcidin is dependent on the interaction with the bacterial membrane and might thus assist with the determination of the yet unknown mode of action of this important human AMP.

Collaboration


Dive into the Vinod Nair's collaboration.

Top Co-Authors

Avatar

Elizabeth R. Fischer

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Bryan Hansen

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Daniel E. Sturdevant

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

David W. Dorward

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Jean Celli

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Audrey Chong

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

B. Joseph Hinnebusch

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Clifton E. Barry

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Frank C. Gherardini

National Institutes of Health

View shared research outputs
Researchain Logo
Decentralizing Knowledge