Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Bryan Leaw is active.

Publication


Featured researches published by Bryan Leaw.


Frontiers in Cellular Neuroscience | 2012

Neurons derived from human embryonic stem cells extend long-distance axonal projections through growth along host white matter tracts after intra-cerebral transplantation

Clare L. Parish; Bryan Leaw; Jordan L. Wright; Christopher A. Reid; Steven Petrou; Mirella Dottori; Lachlan H. Thompson

Human pluripotent stem cells have the capacity for directed differentiation into a wide variety of neuronal subtypes that may be useful for brain repair. While a substantial body of research has lead to a detailed understanding of the ability of neurons in fetal tissue grafts to structurally and functionally integrate after intra-cerebral transplantation, we are only just beginning to understand the in vivo properties of neurons derived from human pluripotent stem cells. Here we have utilized the human embryonic stem (ES) cell line Envy, which constitutively expresses green fluorescent protein (GFP), in order to study the in vivo properties of neurons derived from human ES cells. Rapid and efficient neural induction, followed by differentiation as neurospheres resulted in a GFP+ neural precursor population with traits of neuroepithelial and dorsal forebrain identity. Ten weeks after transplantation into neonatal rats, GFP+ fiber patterns revealed extensive axonal growth in the host brain, particularly along host white matter tracts, although innervation of adjacent nuclei was limited. The grafts were composed of a mix of neural cell types including differentiated neurons and glia, but also dividing neural progenitors and migrating neuroblasts, indicating an incomplete state of maturation at 10 weeks. This was reflected in patch-clamp recordings showing stereotypical properties appropriate for mature functional neurons, including the ability to generate action potentials, as well profiles consistent for more immature neurons. These findings illustrate the intrinsic capacity for neurons derived from human ES cells to integrate at a structural and functional level following transplantation.


Brain | 2014

Reduced dendritic arborization and hyperexcitability of pyramidal neurons in a Scn1b-based model of Dravet syndrome

Christopher A. Reid; Bryan Leaw; Kay L. Richards; Robert J. Richardson; Verena C. Wimmer; Christiaan Yu; Elisa L. Hill-Yardin; Holger Lerche; Ingrid E. Scheffer; Samuel F. Berkovic; Steven Petrou

Epileptic encephalopathies, including Dravet syndrome, are severe treatment-resistant epilepsies with developmental regression. We examined a mouse model based on a human β1 sodium channel subunit (Scn1b) mutation. Homozygous mutant mice shared phenotypic features and pharmaco-sensitivity with Dravet syndrome. Patch-clamp analysis showed that mutant subicular and layer 2/3 pyramidal neurons had increased action potential firing rates, presumably as a consequence of their increased input resistance. These changes were not seen in L5 or CA1 pyramidal neurons. This raised the concept of a regional seizure mechanism that was supported by data showing increased spontaneous synaptic activity in the subiculum but not CA1. Importantly, no changes in firing or synaptic properties of gamma-aminobutyric acidergic interneurons from mutant mice were observed, which is in contrast with Scn1a-based models of Dravet syndrome. Morphological analysis of subicular pyramidal neurons revealed reduced dendritic arborization. The antiepileptic drug retigabine, a K+ channel opener that reduces input resistance, dampened action potential firing and protected mutant mice from thermal seizures. These results suggest a novel mechanism of disease genesis in genetic epilepsy and demonstrate an effective mechanism-based treatment of the disease.


Frontiers in Cellular Neuroscience | 2017

Cell Death in the Developing Brain after Hypoxia-Ischemia

Claire Thornton; Bryan Leaw; Carina Mallard; Syam Nair; Masako Jinnai; Henrik Hagberg

Perinatal insults such as hypoxia–ischemia induces secondary brain injury. In order to develop the next generation of neuroprotective therapies, we urgently need to understand the underlying molecular mechanisms leading to cell death. The cell death mechanisms have been shown to be quite different in the developing brain compared to that in the adult. The aim of this review is update on what cell death mechanisms that are operating particularly in the setting of the developing CNS. In response to mild stress stimuli a number of compensatory mechanisms will be activated, most often leading to cell survival. Moderate-to-severe insults trigger regulated cell death. Depending on several factors such as the metabolic situation, cell type, nature of the stress stimulus, and which intracellular organelle(s) are affected, the cell undergoes apoptosis (caspase activation) triggered by BAX dependent mitochondrial permeabilzation, necroptosis (mixed lineage kinase domain-like activation), necrosis (via opening of the mitochondrial permeability transition pore), autophagic cell death (autophagy/Na+, K+-ATPase), or parthanatos (poly(ADP-ribose) polymerase 1, apoptosis-inducing factor). Severe insults cause accidental cell death that cannot be modulated genetically or by pharmacologic means. However, accidental cell death leads to the release of factors (damage-associated molecular patterns) that initiate systemic effects, as well as inflammation and (regulated) secondary brain injury in neighboring tissue. Furthermore, if one mode of cell death is inhibited, another route may step in at least in a scenario when upstream damaging factors predominate over protective responses. The provision of alternative routes through which the cell undergoes death has to be taken into account in the hunt for novel brain protective strategies.


Stem Cells Translational Medicine | 2018

Amnion Epithelial Cell-Derived Exosomes Restrict Lung Injury and Enhance Endogenous Lung Repair

Jean Tan; Sin N. Lau; Bryan Leaw; Hong P.T. Nguyen; Lois A. Salamonsen; Mohamed I. Saad; Siow T. Chan; Dandan Zhu; Mirja Krause; Carla F. Kim; William Sievert; Euan M. Wallace; Rebecca Lim

Idiopathic pulmonary fibrosis (IPF) is characterized by chronic inflammation, severe scarring, and stem cell senescence. Stem cell‐based therapies modulate inflammatory and fibrogenic pathways by release of soluble factors. Stem cell‐derived extracellular vesicles should be explored as a potential therapy for IPF. Human amnion epithelial cell‐derived exosomes (hAEC Exo) were isolated and compared against human lung fibroblasts exosomes. hAEC Exo were assessed as a potential therapy for lung fibrosis. Exosomes were isolated and evaluated for their protein and miRNA cargo. Direct effects of hAEC Exo on immune cell function, including macrophage polarization, phagocytosis, neutrophil myeloperoxidase activity and T cell proliferation and uptake, were measured. Their impact on immune response, histological outcomes, and bronchioalveolar stem cell (BASC) response was assessed in vivo following bleomycin challenge in young and aged mice. hAEC Exo carry protein cargo enriched for MAPK signaling pathways, apoptotic and developmental biology pathways and miRNA enriched for PI3K‐Akt, Ras, Hippo, TGFβ, and focal adhesion pathways. hAEC Exo polarized and increased macrophage phagocytosis, reduced neutrophil myeloperoxidases, and suppressed T cell proliferation directly. Intranasal instillation of 10 μg hAEC Exo 1 day following bleomycin challenge reduced lung inflammation, while treatment at day 7 improved tissue‐to‐airspace ratio and reduced fibrosis. Administration of hAEC Exo coincided with the proliferation of BASC. These effects were reproducible in bleomycin‐challenged aged mice. The paracrine effects of hAECs can be largely attributed to their exosomes and exploitation of hAEC Exo as a therapy for IPF should be explored further. Stem Cells Translational Medicine 2018;7:180–196


Stem Cells Translational Medicine | 2017

Long-distance axonal growth and protracted functional maturation of neurons derived from human induced pluripotent stem cells after intracerebral transplantation

Jonathan C. Niclis; Christopher Turner; Jennifer Durnall; Stuart McDougal; Jessica A. Kauhausen; Bryan Leaw; Mirella Dottori; Clare L. Parish; Lachlan H. Thompson

The capacity for induced pluripotent stem (iPS) cells to be differentiated into a wide range of neural cell types makes them an attractive donor source for autologous neural transplantation therapies aimed at brain repair. Translation to the in vivo setting has been difficult, however, with mixed results in a wide variety of preclinical models of brain injury and limited information on the basic in vivo properties of neural grafts generated from human iPS cells. Here we have generated a human iPS cell line constitutively expressing green fluorescent protein as a basis to identify and characterize grafts resulting from transplantation of neural progenitors into the adult rat brain. The results show that the grafts contain a mix of neural cell types, at various stages of differentiation, including neurons that establish extensive patterns of axonal growth and progressively develop functional properties over the course of 1 year after implantation. These findings form an important basis for the design and interpretation of preclinical studies using human stem cells for functional circuit re‐construction in animal models of brain injury. Stem Cells Translational Medicine 2017;6:1547–1556


Placenta | 2015

Inhibition of activin A signalling in a mouse model of pre-eclampsia.

Rebecca Lim; Sambridhi Adhikari; Seshini Gurusinghe; Bryan Leaw; Rutu Acharya; Rahana Rahman; Rudy Ciayadi; Mahesh K. Potdar; Geoffrey F. Kelso; Milton T.W. Hearn; Euan M. Wallace

INTRODUCTION Pre-eclampsia remains a major cause of maternal and fetal morbidity and mortality. Despite intensive research over the last 50 years, significant therapeutic advances have yet to be realised. We recently reported on the role of activin A in the pathophysiology of pre-eclampsia, whereby a pre-eclampsia-like disease state was induced in pregnant mice through activin A infusion. Using the same animal model, the effects of inhibiting activin A signalling on this pre-eclampsia-like disease state have now been assessed with low molecular weight compounds structurally related to activin-receptor-like kinase (ALK) inhibitors. METHODS 23 synthetic compounds were screened for ability to reduce activin A-induced free radical production in HUVECs. Further, following administration of activin A (50 μg) via a subcutaneous mini-osmotic pump from day 10 of pregnancy, the most active inhibitor, MKP-1-140A, (1 mg/kg) was also concomitantly administered via subcutaneous injections. RESULTS Significant reductions in activin A-induced systolic blood pressure and urine albumin:creatinine ratio were observed with inhibitor-treated animals. However, these findings were accompanied by sustained elevation of liver enzymes and albumin extravasation in the brains of pregnant mice that received MKP-1-140A. Furthermore, inhibition of activin A signalling with MKP-1-140A failed to rescue fetal growth restriction, and treatment with MKP-1-140A alone resulted in craniofacial and karyotypic abnormalities. DISCUSSION These data indicate that whilst inhibition of activin A signalling by the low molecular weight ALK kinase inhibitor, MKP-1-140A, reduced some of the physiological manifestations of pre-eclampsia, the potential for serious maternal and fetal side effects may preclude it from clinical applications.


Frontiers in Cellular Neuroscience | 2017

Mitochondria, bioenergetics and excitotoxicity: New therapeutic targets in perinatal brain injury

Bryan Leaw; Syam Nair; Rebecca Lim; Claire Thornton; Carina Mallard; Henrik Hagberg

Injury to the fragile immature brain is implicated in the manifestation of long-term neurological disorders, including childhood disability such as cerebral palsy, learning disability and behavioral disorders. Advancements in perinatal practice and improved care mean the majority of infants suffering from perinatal brain injury will survive, with many subtle clinical symptoms going undiagnosed until later in life. Hypoxic-ischemia is the dominant cause of perinatal brain injury, and constitutes a significant socioeconomic burden to both developed and developing countries. Therapeutic hypothermia is the sole validated clinical intervention to perinatal asphyxia; however it is not always neuroprotective and its utility is limited to developed countries. There is an urgent need to better understand the molecular pathways underlying hypoxic-ischemic injury to identify new therapeutic targets in such a small but critical therapeutic window. Mitochondria are highly implicated following ischemic injury due to their roles as the powerhouse and main energy generators of the cell, as well as cell death processes. While the link between impaired mitochondrial bioenergetics and secondary energy failure following loss of high-energy phosphates is well established after hypoxia-ischemia (HI), there is emerging evidence that the roles of mitochondria in disease extend far beyond this. Indeed, mitochondrial turnover, including processes such as mitochondrial biogenesis, fusion, fission and mitophagy, affect recovery of neurons after injury and mitochondria are involved in the regulation of the innate immune response to inflammation. This review article will explore these mitochondrial pathways, and finally will summarize past and current efforts in targeting these pathways after hypoxic-ischemic injury, as a means of identifying new avenues for clinical intervention.


Clinical Endocrinology | 2017

Maternal 25-hydroxyvitamin D is inversely correlated with foetal serotonin.

Padma Murthi; Miranda Davies-Tuck; Martha Lappas; Harmeet Singh; Joanne C. Mockler; Rahana Rahman; Rebecca Lim; Bryan Leaw; James C.G. Doery; Euan M. Wallace; Peter R. Ebeling

Maternal vitamin D deficiency during pregnancy has been linked to impaired neurocognitive development in childhood. The mechanism by which vitamin D affects childhood neurocognition is unclear but may be via interactions with serotonin, a neurotransmitter involved in foetal brain development. In this study, we aimed to explore associations between maternal and foetal vitamin D concentrations, and foetal serotonin concentrations at term.


Frontiers in Pharmacology | 2017

The Human Amnion Epithelial Cell Secretome Decreases Hepatic Fibrosis in Mice with Chronic Liver Fibrosis

Majid Alhomrani; Jeanne Correia; Marcus Zavou; Bryan Leaw; Nathan Kuk; Rong Xu; Mohamed I. Saad; Alexander Hodge; David W. Greening; Rebecca Lim; William Sievert

Background: Hepatic stellate cells (HSCs) are the primary collagen-secreting cells in the liver. While HSCs are the major cell type involved in the pathogenesis of liver fibrosis, hepatic macrophages also play an important role in mediating fibrogenesis and fibrosis resolution. Previously, we observed a reduction in HSC activation, proliferation, and collagen synthesis following exposure to human amnion epithelial cells (hAEC) and hAEC-conditioned media (hAEC-CM). This suggested that specific factors secreted by hAEC might be effective in ameliorating liver fibrosis. hAEC-derived extracellular vesicles (hAEC-EVs), which are nanosized (40–100 nm) membrane bound vesicles, may act as novel cell–cell communicators. Accordingly, we evaluated the efficacy of hAEC-EV in modulating liver fibrosis in a mouse model of chronic liver fibrosis and in human HSC. Methods: The hAEC-EVs were isolated and characterized. C57BL/6 mice with CCl4-induced liver fibrosis were administered hAEC-EV, hAEC-CM, or hAEC-EV depleted medium (hAEC-EVDM). LX2 cells, a human HSC line, and bone marrow-derived mouse macrophages were exposed to hAEC-EV, hAEC-CM, and hAEC-EVDM. Mass spectrometry was used to examine the proteome profile of each preparation. Results: The extent of liver fibrosis and number of activated HSCs were reduced significantly in CCl4-treated mice given hAEC-EVs, hAEC-CM, and hAEC EVDM compared to untreated controls. Hepatic macrophages were significantly decreased in all treatment groups, where a predominant M2 phenotype was observed. Human HSCs cultured with hAEC-EV and hAEC-CM displayed a significant reduction in collagen synthesis and hAEC-EV, hAEC-CM, and hAEC-EVDM altered macrophage polarization in bone marrow-derived mouse macrophages. Proteome analysis showed that 164 proteins were unique to hAEC-EV in comparison to hAEC-CM and hAEC-EVDM, and 51 proteins were co-identified components with the hAEC-EV fraction. Conclusion: This study provides novel data showing that hAEC-derived EVs significantly reduced liver fibrosis and macrophage infiltration to an extent similar to hAEC-EVDM and hAEC-CM. hAEC-EV-based therapy may be a potential therapeutic option for liver fibrosis.


Archive | 2018

Real-Time Blood Pressure Recording Using Radiotelemetry in a Rat Model of Preeclampsia

Bryan Leaw; Seshini Gurusinghe; Rebecca Lim; Euan M. Wallace

Radiotelemetry is increasingly being recognized not just as the gold standard but a necessity for validation of gestational hypertension seen in preeclampsia. Here we describe radiotelemetry probe implantation into the descending aorta of Sprague-Dawley rats to allow real-time blood pressure recording over the entire gestational period. This is a valuable tool to be able to track changes in maternal blood pressure throughout gestation and the efficacy of novel therapeutic agents in controlling hypertension.

Collaboration


Dive into the Bryan Leaw's collaboration.

Top Co-Authors

Avatar

Rebecca Lim

Hudson Institute of Medical Research

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Harmeet Singh

Prince Henry's Institute of Medical Research

View shared research outputs
Top Co-Authors

Avatar

Joanne C. Mockler

Hudson Institute of Medical Research

View shared research outputs
Top Co-Authors

Avatar

Rahana Rahman

Hudson Institute of Medical Research

View shared research outputs
Top Co-Authors

Avatar

Dandan Zhu

Hudson Institute of Medical Research

View shared research outputs
Top Co-Authors

Avatar

Jean Tan

Hudson Institute of Medical Research

View shared research outputs
Top Co-Authors

Avatar

Padma Murthi

Hudson Institute of Medical Research

View shared research outputs
Top Co-Authors

Avatar

Ruth Muljadi

Hudson Institute of Medical Research

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge