Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Rebecca Lim is active.

Publication


Featured researches published by Rebecca Lim.


Cell Transplantation | 2011

Human amnion epithelial cells prevent bleomycin-induced lung injury and preserve lung function

Sean Murphy; Rebecca Lim; Hayley Dickinson; Rutu Acharya; Sharina Rosli; Graham Jenkin; Euan M. Wallace

Human amnion epithelial cells (hAECs) have attracted recent attention as a promising source of cells for regenerative therapies, with reports that cells derived from human term amnion possess multipotent differentiation ability, low immunogenicity, and anti-inflammatory properties. Specifically, in animal models of lung disease characterized by significant loss of lung tissue secondary to chronic inflammation and fibrosis, the transplantation of hAECs has been shown to reduce both inflammation and subsequent fibrosis. To further explore the mechanisms by which hAECs reduce pulmonary fibrosis and enhance lung regeneration, we utilized a bleomycin-induced model of pulmonary fibrosis and investigated the ability of hAECs to reduce fibrosis and thereby improve pulmonary function. We aimed to determine if hAECs, injected into the peritoneal cavity could migrate to the lung, engraft, and form functional lung epithelium, and whether hAECs could modulate the inflammatory environment in the bleomycin-injured lung. We demonstrated that, compared to bleomycin alone, IP administration of hAECs 24 h after bleomcyin, decreased gene expression of the proinflammatory cytokines TNF-α, TGF-β, IFN-γ, and IL-6 and decreased subsequent pulmonary fibrosis with less pulmonary collagen deposition, reduced levels of α-smooth muscle actin and decreased inflammatory cell infiltrate. We also showed that hAECs are able to prevent a decline in pulmonary function associated with bleomycin-induced lung damage. We were unable to detect any significant engraftment of hAECs in injured, or uninjured, lung after administration. The findings from this study support the further investigation of hAECs as a potential cell therapy for inflammatory and fibrogenic diseases.


Current protocols in stem cell biology | 2010

Amnion Epithelial Cell Isolation and Characterization for Clinical Use

Sean Murphy; Sharina Rosli; Rutu Acharya; Louisa Mathias; Rebecca Lim; Euan M. Wallace; Graham Jenkin

Human amnion epithelial cells (hAECs) are a heterologous population positive for stem cell markers; they display multilineage differentiation potential, differentiating into cells of the endoderm (liver, lung epithelium), mesoderm (bone, fat), and ectoderm (neural cells). They have a low immunogenic profile and possess potent immunosuppressive properties. Hence, hAECs may be a valuable source of cells for cell therapy. This unit describes an efficient and effective method of hAEC isolation, culture, and cryopreservation that is animal product-free and in accordance with current guidelines on preparation of cells for clinical use. Cells isolated using this method were characterized after 5 passages by analysis of karyotype, cell cycle distribution, and changes in telomere length. The differentiation potential of hAECs isolated using this animal product-free method was demonstrated by differentiation into lineages of the three primary germ layers and expression of lineage-specific markers analyzed by PCR, immunocytochemistry, and histology.


American Journal of Obstetrics and Gynecology | 2012

Human amnion epithelial cells reduce ventilation-induced preterm lung injury in fetal sheep

Ryan Hodges; Graham Jenkin; Stuart B. Hooper; Beth J. Allison; Rebecca Lim; Hayley Dickinson; Suzie L. Miller; Patricia Vosdoganes; Euan M. Wallace

OBJECTIVE The objective of the study was to explore whether human amnion epithelial cells (hAECs) can mitigate ventilation-induced lung injury. STUDY DESIGN An established in utero ovine model of ventilation-induced lung injury was used. At day 110 of gestation, singleton fetal lambs either had sham in utero ventilation (IUV) (n = 4), 12 hours of IUV alone (n = 4), or 12 hours of IUV and hAEC administration (n = 5). The primary outcome, structural lung injury, was assessed 1 week later. RESULTS Compared with sham controls, IUV alone was associated with significant lung injury: increased collagen (P = .03), elastin (P = .02), fibrosis (P = .02), and reduced secondary-septal crests (P = .009). This effect of IUV was significantly mitigated by the administration of hAECs: less collagen (P = .03), elastin (P = .04), fibrosis (P = .02), normalized secondary-septal crests (P = .02). The hAECs were immunolocalized within the fetal lung and had differentiated into type I and II alveolar cells. CONCLUSION The hAECs mitigate ventilation-induced lung injury and differentiated into alveolar cells in vivo.


Cell Transplantation | 2014

Human amnion epithelial cells mediate lung repair by directly modulating macrophage recruitment and polarization

Jean Tan; Siow Teng Chan; Euan M. Wallace; Rebecca Lim

Human amnion epithelial cells (hAECs) have been shown to modulate inflammation and restore normal lung structure and respiratory function following bleomycin challenge in immune-competent mice. These effects are exerted despite a lack of significant engraftment of hAECs, suggesting that immunomodulatory effect mechanisms are at play. In this study, using the bleomycin model of injury, we explored the interactions between hAECs and macrophages. We administered 4 million hAECs intraperitoneally to C57Bl6 mice 24 h following a bleomycin challenge. Using FACS analysis and qPCR, we showed that hAEC administration significantly reduced macrophage infiltration into the lungs and that the majority of the pulmonary macrophages were of the M2 phenotype. Using bone marrow-derived macrophages, we then showed that hAEC-conditioned media could alter macrophage polarization, migration, and phagocytosis, without affecting macrophage survival or proliferation in vitro. This study provides the first evidence that hAECs directly influence macrophage behavior in a proreparative manner and suggests that hAECs are able to mediate these effects independently of other immune cell types.


Cell Transplantation | 2012

Human amnion epithelial cells do not abrogate pulmonary fibrosis in mice with impaired macrophage function.

Sean Murphy; Suzane Chin Shiyun; Jean Tan; Siow Teng Chan; Graham Jenkin; Euan M. Wallace; Rebecca Lim

Since current treatments for both acute and chronic lung diseases are less than ideal, there has been recent interest in the use of cell-based therapies for inflammatory lung disease. Specifically, human amnion epithelial cells (hAECs) have been shown to reduce bleomycin-induced lung injury and prevent subsequent loss of respiratory function, primarily through modulation of the host immune response. The precise mechanisms of this effect remain unclear. We aimed to investigate the potential of hAECs to mitigate bleomycin-induced lung injury in surfactant protein C deficient (Sftpc-/-) mice, which are highly susceptible to pulmonary injury as a result of impairment of macrophage function. Primary hAECs were administered to wild-type (Sftpc+/+) and Sftpc-/- mice 24 h after exposure to bleomycin. Compared to Sftpc+/+ mice receiving bleomycin alone, Sftpc+/+ mice administered hAECs 24 h after bleomycin exposure had decreased expression of proinflammatory genes, decreased macrophage and neutrophil infiltration, fibrosis, collagen content, and α-smooth muscle actin as well as a significant improvement in lung function. Compared to Sftpc-/- mice given bleomycin alone, Sftpc-/- mice administered hAECs 24 h after bleomycin did not have a decrease in inflammatory gene expression or a reduction in macrophage pulmonary infiltration. Subsequently, Sftpc-/- mice did not show any decrease in pulmonary fibrosis or improvement of lung function after hAEC administration. The ability of hAECs to mitigate bleomycin-induced lung injury is abolished in Sftpc-/- mice, suggesting that hAECs require normal host macrophage function to exert their reparative effects.


Frontiers in Cellular Neuroscience | 2013

Post-stroke inflammation and the potential efficacy of novel stem cell therapies: focus on amnion epithelial cells

Bradley Randal Scott Broughton; Rebecca Lim; Thiruma V. Arumugam; Grant R. Drummond; Euan M. Wallace; Christopher G. Sobey

Ischemic stroke is a debilitating disease for which there are currently no effective treatments besides the clot-buster, tissue plasminogen activator (t-PA), which is administered to less than 10% of patients due to a limited (4.5 h) time window of efficacy. Thus, there is an urgent need for novel therapies that can prevent or reverse the effects of stroke-induced brain injury. Recent encouraging reports have revealed that stem cells derived from human tissue, including embryonic, induced pluripotent, neural, and mesenchymal cells, can rescue injured brain tissue and improve functional recovery in experimental models of stroke. However, there are potentially major limitations to each of these types of stem cells that may ultimately prevent or restrict their use as viable mainstream treatment options for stroke patients. Conversely, stem cells derived from the placenta, such as human amnion epithelial cells (hAECs), appear to have several important advantages over other stem cell lineages, in particular their non-tumorigenic and non-immunogenic characteristics. Surprisingly, so far hAECs have received little attention as a potential stroke therapy. This brief review will firstly describe the inflammatory response and immune cell involvement following stroke, and then consider the potential for hAECs to improve stroke outcome given their unique characteristics. These actions of hAECs may involve a reduction of local inflammation and modulation of the immune response, promotion of neural recovery, differentiation into neural tissue, re-innervation of lost connections, and secretion of necessary cytokines, growth factors, hormones and/or neurotransmitters to restore cellular function.


Cell Transplantation | 2013

Human amnion epithelial cells repair established lung injury.

Patricia Vosdoganes; Euan M. Wallace; Siow Teng Chan; Rutu Acharya; Timothy J. M. Moss; Rebecca Lim

With a view to developing a cell therapy for chronic lung disease, human amnion epithelial cells (hAECs) have been shown to prevent acute lung injury. Whether they can repair established lung disease is unknown. We aimed to assess whether hAECs can repair existing lung damage induced in mice by bleomycin and whether the timing of cell administration influences reparative efficacy. In addition, we aimed to characterize the effect of hAECs on fibroblast proliferation and activation, investigating possible mechanisms of reparative action. hAECs were administered intraperitoneally (IP) either 7 or 14 days after bleomycin exposure. Lungs were assessed 7 days after hAEC administration. Bleomycin significantly reduced body weight and induced pulmonary inflammation and fibrosis at 14 and 21 days. Delivery of hAECs 7 days after bleomycin had no effect on lung injury, whereas delivery of hAECs 14 days after bleomycin normalized lung tissue density, collagen content, and α-SMA production, in association with a reduction in pulmonary leucocytes and lung expression of TGF-β, PDGF-α, and PDGF-β. In vitro, hAECs reduced proliferation and activation of primary mouse lung fibroblasts. Our findings suggest that the timing of hAEC administration in the course of lung disease may impact on the ability of hAECs to repair lung injury.


BMJ Open | 2013

Phase I pilot clinical trial of antenatal maternally administered melatonin to decrease the level of oxidative stress in human pregnancies affected by pre-eclampsia (PAMPR): study protocol

Sebastian R. Hobson; Rebecca Lim; Elizabeth E. Gardiner; Nicole O Alers; Euan M. Wallace

Introduction Pre-eclampsia is a common pregnancy condition affecting between 3% and 7% of women. Unfortunately, the exact pathophysiology of the disease is unknown and as such there are no effective treatments that exist notwithstanding prompt delivery of the fetus and culprit placenta. As many cases of pre-eclampsia occur in preterm pregnancies, it remains a significant cause of maternal and perinatal morbidity and mortality. Recently, in vitro and animal studies have highlighted the potential role of antioxidants in mitigating the effects of the disease. Melatonin is a naturally occurring antioxidant hormone and provides an excellent safety profile combined with ease of oral administration. We present the protocol for a phase I pilot clinical trial investigating the efficacy and side effects of maternal treatment with oral melatonin in pregnancies affected by preterm pre-eclampsia. Methods and analysis We propose undertaking a single-arm open label clinical trial recruiting 20 women with preterm pre-eclampsia (24+0–35+6 weeks). We will take baseline measurements of maternal and fetal well-being, levels of oxidative stress, ultrasound Doppler studies and other biomarkers of pre-eclampsia. Women will then be given oral melatonin (10 mg) three times daily until delivery. The primary outcome will be time interval between diagnosis and delivery compared to historical controls. Secondary outcomes will compare the baseline measurements previously mentioned with twice-weekly measurements during treatment and then 6 weeks postpartum. Ethics and dissemination Ethical approval has been obtained from Monash Health Human Research Ethics Committee B (HREC 13076B). Data will be presented at international conferences and published in peer-reviewed journals. Trial registration number ACTRN12613000476730 (ANZCTR).


American Journal of Obstetrics and Gynecology | 2015

Activin and NADPH-oxidase in preeclampsia: insights from in vitro and murine studies

Rebecca Lim; Rutu Acharya; Pavitra Delpachitra; Sebastian R. Hobson; Christopher G. Sobey; Grant R. Drummond; Euan M. Wallace

OBJECTIVE Clinical management of preeclampsia has remained unchanged for almost 5 decades. We now understand that maternal endothelial dysfunction likely arises because of placenta-derived vasoactive factors. Activin A is one such antiangiogenic factor that is released by the placenta and that is elevated in maternal serum in women with preeclampsia. Whether activin has a role in the pathogenesis of preeclampsia is not known. STUDY DESIGN To assess the effects of activin on endothelial cell function, we cultured human umbilical vein endothelial cells in the presence of activin or serum from normal pregnant women or pregnant women with preeclampsia, with or without follistatin, a functional activin antagonist or apocynin, a NADPH oxidase (Nox2) inhibitor. We also administered activin to pregnant C57Bl6 mice, with or without apocynin, and studied maternal and fetal outcomes. Last, we assessed endothelial cell Nox2 and nitric oxide synthase expression in normal pregnant women and pregnant women with preeclampsia. RESULTS Activin and preeclamptic serum induced endothelial cell oxidative stress by Nox2 up-regulation and endothelial cell dysfunction, which are effects that are mitigated by either follistatin or apocynin. The administration of activin to pregnant mice induced endothelial oxidative stress, hypertension, proteinuria, fetal growth restriction, and preterm littering. Apocynin prevented all of these effects. Compared with normal pregnant women, women with preeclampsia had increased endothelial Nox2 expression. CONCLUSION An activin-Nox2 pathway is a likely link between an injured placenta, endothelial dysfunction, and preeclampsia. This offers opportunities that are not novel therapeutic approaches to preeclampsia.


Journal of Neuroinflammation | 2015

Immunosuppressive potential of human amnion epithelial cells in the treatment of experimental autoimmune encephalomyelitis

Courtney McDonald; Natalie Lisa Payne; Guizhi Sun; Leon Moussa; Christopher Siatskas; Rebecca Lim; Euan M. Wallace; Graham Jenkin; Claude C.A. Bernard

BackgroundMultiple sclerosis (MS) is an autoimmune inflammatory disease of the central nervous system (CNS). In recent years, it has been found that cells such as human amnion epithelial cells (hAECs) have the ability to modulate immune responses in vitro and in vivo and can differentiate into multiple cell lineages. Accordingly, we investigated the immunoregulatory effects of hAECs as a potential therapy in an MS-like disease, EAE (experimental autoimmune encephalomyelitis), in mice.MethodsUsing flow cytometry, the phenotypic profile of hAECs from different donors was assessed. The immunomodulatory properties of hAECs were examined in vitro using antigen-specific and one-way mixed lymphocyte proliferation assays. The therapeutic efficacy of hAECs was examined using a relapsing-remitting model of EAE in NOD/Lt mice. T cell responsiveness, cytokine secretion, T regulatory, and T helper cell phenotype were determined in the peripheral lymphoid organs and CNS of these animals.ResultsIn vitro, hAECs suppressed both specific and non-specific T cell proliferation, decreased pro-inflammatory cytokine production, and inhibited the activation of stimulated T cells. Furthermore, T cells retained their naïve phenotype when co-cultured with hAECs. In vivo studies revealed that hAECs not only suppressed the development of EAE but also prevented disease relapse in these mice. T cell responses and production of the pro-inflammatory cytokine interleukin (IL)-17A were reduced in hAEC-treated mice, and this was coupled with a significant increase in the number of peripheral T regulatory cells and naïve CD4+ T cells. Furthermore, increased proportions of Th2 cells in the peripheral lymphoid organs and within the CNS were observed.ConclusionThe therapeutic effect of hAECs is in part mediated by inducing an anti-inflammatory response within the CNS, demonstrating that hAECs hold promise for the treatment of autoimmune diseases like MS.

Collaboration


Dive into the Rebecca Lim's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Graham Jenkin

Hudson Institute of Medical Research

View shared research outputs
Top Co-Authors

Avatar

Jean Tan

Hudson Institute of Medical Research

View shared research outputs
Top Co-Authors

Avatar

Joanne C. Mockler

Hudson Institute of Medical Research

View shared research outputs
Top Co-Authors

Avatar

Siow Teng Chan

Monash Institute of Medical Research

View shared research outputs
Top Co-Authors

Avatar

Bryan Leaw

Hudson Institute of Medical Research

View shared research outputs
Top Co-Authors

Avatar

Rutu Acharya

Monash Institute of Medical Research

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Dandan Zhu

Hudson Institute of Medical Research

View shared research outputs
Top Co-Authors

Avatar

Ruth Muljadi

Hudson Institute of Medical Research

View shared research outputs
Researchain Logo
Decentralizing Knowledge