Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Bryce V. Plapp is active.

Publication


Featured researches published by Bryce V. Plapp.


Biochemistry | 1994

Structures of horse liver alcohol dehydrogenase complexed with NAD+ and substituted benzyl alcohols.

S. Ramaswamy; Hans Eklund; Bryce V. Plapp

Structures of the enzyme complexed with NAD+ and 2,3,4,5,6-pentafluorobenzyl alcohol were determined by X-ray crystallography at a resolution of 2.1 A and to a refinement R value of 18.3% for a monoclinic (P2(1)) form and to 2.4 A and an R value of 18.9% for a triclinic crystal form. The pentafluorobenzyl alcohol does not react, due to electron withdrawal by the fluorine atoms. A structure with NAD+ and p-bromobenzyl alcohol in the monoclinic form was also determined at 2.5 A and an R value of 16.7%. The conformations of the subunits in the monoclinic and triclinic crystal forms are very similar. The dimer is the asymmetric unit, and a rigid body rotation closes the cleft between the coenzyme and catalytic domains upon complex formation. In the monoclinic form, this conformational change is described by a rotation of 9 degrees in one subunit and 10 degrees in the other. The pentafluoro- and p-bromobenzyl alcohols bind in overlapping positions. The hydroxyl group of each alcohol is ligated to the catalytic zinc and participates in an extensive hydrogen-bonded network that includes the imidazole group of His-51, which can act as a base and shuttle a proton to solvent. The hydroxymethyl carbon of the pentafluorobenzyl alcohol is 3.4 A from C4 of the nicotinamide ring, and the pro-R hydrogen is in a good position for direct transfer to C4. The p-bromobenzyl alcohol may react after small rotations around single bonds of the alcohol. These structures should approximate the active Michaelis-Menten complexes.


Journal of Molecular Evolution | 1992

Progressive sequence alignment and molecular evolution of the Zn-containing alcohol dehydrogenase family

Hong-Wei Sun; Bryce V. Plapp

SummarySequences of 47 members of the Zn-containing alcohol dehydrogenase (ADH) family were aligned progressively, and an evolutionary tree with detailed branch order and branch lengths was produced. The alignment shows that only 9 amino acid residues (of 374 in the horse liver ADH sequence) are conserved in this family; these include eight Gly and one Val with structural roles. Three residues that bind the catalytic Zn and modulate its electrostatic environment are conserved in 45 members. Asp 223, which determines specificity for NAD, is found in all but the two NADP-dependent enzymes, which have Gly or Ala. Ser or Thr 48, which makes a hydrogen bond to the substrate, is present in 46 members. The four Cys ligands for the structural zinc are conserved except in ζ-crystallin, the sorbitol dehydrogenases, and two bacterial enzymes. Analysis of the evolutionary tree gives estimates of the times of divergence for different animal ADHs. The human class II (π) and class III (κ) ADHs probably diverged about 630 million years ago, and the newly identified human ADH6 appeared about 520 million years ago, implying that these classes of enzymes may exist or have existed in all vertebrates. The human class I ADH isoenzymes (α, β, and γ) diverged about 80 million years ago, suggesting that these isoenzymes may exist or have existed in all primates. Analysis of branch lengths shows that these plant ADHs are more conserved than the animal ones and that class III ADHs are more conserved than class I ADHs. The rate of acceptance of point mutations (PAM units) shows that selection pressure has existed for ADHs, implying that these enzymes play definite metabolic roles.


Archives of Biochemistry and Biophysics | 2010

Conformational Changes and Catalysis by Alcohol Dehydrogenase

Bryce V. Plapp

As shown by X-ray crystallography, horse liver alcohol dehydrogenase undergoes a global conformational change upon binding of NAD(+) or NADH, involving a rotation of the catalytic domain relative to the coenzyme binding domain and the closing up of the active site to produce a catalytically efficient enzyme. The conformational change requires a complete coenzyme and is affected by various chemical or mutational substitutions that can increase the catalytic turnover by altering the kinetics of the isomerization and rate of dissociation of coenzymes. The binding of NAD(+) is kinetically limited by a unimolecular isomerization (corresponding to the conformational change) that is controlled by deprotonation of the catalytic zinc-water to produce a negatively-charged zinc-hydroxide, which can attract the positively-charged nicotinamide ring. The deprotonation is facilitated by His-51 acting through a hydrogen-bonded network to relay the proton to solvent. Binding of NADH also involves a conformational change, but the rate is very fast. After the enzyme binds NAD(+) and closes up, the substrate displaces the hydroxide bound to the catalytic zinc; this exchange may involve a double displacement reaction where the carboxylate group of a glutamate residue first displaces the hydroxide (inverting the tetrahedral coordination of the zinc), and then the exogenous ligand displaces the glutamate. The resulting enzyme-NAD(+)-alcoholate complex is poised for hydrogen transfer, and small conformational fluctuations may bring the reactants together so that the hydride ion is transferred by quantum mechanical tunneling. In the process, the nicotinamide ring may become puckered, as seen in structures of complexes of the enzyme with NADH. The conformational changes of alcohol dehydrogenase demonstrate the importance of protein dynamics in catalysis.


Biochemistry | 2014

Yeast alcohol dehydrogenase structure and catalysis.

Savarimuthu Baskar Raj; S. Ramaswamy; Bryce V. Plapp

Yeast (Saccharomyces cerevisiae) alcohol dehydrogenase I (ADH1) is the constitutive enzyme that reduces acetaldehyde to ethanol during the fermentation of glucose. ADH1 is a homotetramer of subunits with 347 amino acid residues. A structure for ADH1 was determined by X-ray crystallography at 2.4 Å resolution. The asymmetric unit contains four different subunits, arranged as similar dimers named AB and CD. The unit cell contains two different tetramers made up of “back-to-back” dimers, AB:AB and CD:CD. The A and C subunits in each dimer are structurally similar, with a closed conformation, bound coenzyme, and the oxygen of 2,2,2-trifluoroethanol ligated to the catalytic zinc in the classical tetrahedral coordination with Cys-43, Cys-153, and His-66. In contrast, the B and D subunits have an open conformation with no bound coenzyme, and the catalytic zinc has an alternative, inverted coordination with Cys-43, Cys-153, His-66, and the carboxylate of Glu-67. The asymmetry in the dimeric subunits of the tetramer provides two structures that appear to be relevant for the catalytic mechanism. The alternative coordination of the zinc may represent an intermediate in the mechanism of displacement of the zinc-bound water with alcohol or aldehyde substrates. Substitution of Glu-67 with Gln-67 decreases the catalytic efficiency by 100-fold. Previous studies of structural modeling, evolutionary relationships, substrate specificity, chemical modification, and site-directed mutagenesis are interpreted more fully with the three-dimensional structure.


Advances in Experimental Medicine and Biology | 1975

Rate-limiting steps in ethanol metabolism and approaches to changing these rates biochemically.

Bryce V. Plapp

Ethanol is oxidized to acetate primarily by a system involving liver alcohol and aldehyde dehydrogenases coupled with reoxidation of NADH by the mitochondria. All of these steps are at least partially rate-limiting in ethanol metabolism, with alcohol dehydrogenase and oxidative phosphorylation probably slower than the others. More research is required to assess the quantitative roles of various steps. Many agents are ineffective in changing the rate of metabolism of ethanol, but fructose and dinitrophenol may increase the rate by up to 1.5-fold in vivo. The failure of single agents to increase the rate substantially may indicate that when one step is accelerated, another step becomes rate-limited. Therefore, combinations of agents that affect several steps simultaneously may be required for acceleration. Effective experimental methods for inhibiting alcohol dehydrogenase in vivo are available.


Archives of Biochemistry and Biophysics | 1984

Kinetics of inhibition of ethanol metabolism in rats and the rate-limiting role of alcohol dehydrogenase

Bryce V. Plapp; Kevin G. Leidal; Ronald K. Smith; Bruce P. Murch

If liver alcohol dehydrogenase were rate-limiting in ethanol metabolism, inhibitors of the enzyme should inhibit the metabolism with the same type of kinetics and the same kinetic constants in vitro and in vivo. Against varied concentrations of ethanol, 4-methylpyrazole is a competitive inhibitor of purified rat liver alcohol dehydrogenase (Kis = 0.11 microM, in 83 mM potassium phosphate and 40 mM KCl buffer, pH 7.3, 37 degrees C) and is competitive in rats (with Kis = 1.4 mumol/kg). Isobutyramide is essentially an uncompetitive inhibitor of purified enzyme (Kii = 0.33 mM) and of metabolism in vivo (Kii = 1.0 mmol/kg). Low concentrations of both inhibitors decreased the rate of metabolism as a direct function of their concentrations. Qualitatively, therefore, alcohol dehydrogenase activity appears to be a major rate-limiting factor in ethanol metabolism. Quantitatively, however, the constants may not agree because of distribution in the animal or metabolism of the inhibitors. At saturating concentrations of inhibitors, ethanol is eliminated by inhibitor-insensitive pathways, at about 10% of the total rate at a dose of ethanol of 10 mmol/kg. Uncompetitive inhibitors of alcohol dehydrogenase should be especially useful for inhibiting the metabolism of alcohols since they are effective even at saturating levels of alcohol, in contrast to competitive inhibitors, whose action is overcome by saturation with alcohol.


Archives of Biochemistry and Biophysics | 1973

On calculation of rate and dissociation constants from kinetic constants for the Ordered Bi Bi mechanism of liver alcohol dehydrogenase

Bryce V. Plapp

Abstract Rate and dissociation constants for the Ordered Bi Bi mechanism can be incorrectly calculated if interconversion of central complexes is ignored. The problems are illustrated by an examination of the kinetics of liver alcohol dehydrogenase. Definitions of the kinetic constants in terms of rate constants for the complete mechanism are presented.


Biochemistry | 2012

Atomic-Resolution Structures of Horse Liver Alcohol Dehydrogenase with NAD(+) and Fluoroalcohols Define Strained Michaelis Complexes.

Bryce V. Plapp; S. Ramaswamy

Structures of horse liver alcohol dehydrogenase complexed with NAD(+) and unreactive substrate analogues, 2,2,2-trifluoroethanol or 2,3,4,5,6-pentafluorobenzyl alcohol, were determined at 100 K at 1.12 or 1.14 Å resolution, providing estimates of atomic positions with overall errors of ~0.02 Å, the geometry of ligand binding, descriptions of alternative conformations of amino acid residues and waters, and evidence of a strained nicotinamide ring. The four independent subunits from the two homodimeric structures differ only slightly in the peptide backbone conformation. Alternative conformations for amino acid side chains were identified for 50 of the 748 residues in each complex, and Leu-57 and Leu-116 adopt different conformations to accommodate the different alcohols at the active site. Each fluoroalcohol occupies one position, and the fluorines of the alcohols are well-resolved. These structures closely resemble the expected Michaelis complexes with the pro-R hydrogens of the methylene carbons of the alcohols directed toward the re face of C4N of the nicotinamide rings with a C-C distance of 3.40 Å. The oxygens of the alcohols are ligated to the catalytic zinc at a distance expected for a zinc alkoxide (1.96 Å) and participate in a low-barrier hydrogen bond (2.52 Å) with the hydroxyl group of Ser-48 in a proton relay system. As determined by X-ray refinement with no restraints on bond distances and planarity, the nicotinamide rings in the two complexes are slightly puckered (quasi-boat conformation, with torsion angles of 5.9° for C4N and 4.8° for N1N relative to the plane of the other atoms) and have bond distances that are somewhat different compared to those found for NAD(P)(+). It appears that the nicotinamide ring is strained toward the transition state on the path to alcohol oxidation.


Analytical Biochemistry | 1974

Determination of ε-acetimidyllysine in proteins

Bryce V. Plapp; Jack C. Kim

Abstract ϵ-Acetimidyllysine in proteins can be determined by hydrolysis of the protein in 6 m HCl at 110°C for different times (e.g., 22 and 46 hr) and chromatography on a column (0.9 × 12 cm) of an amino acid analyzer. The color value of the lysine derivative is the same as that of arginine. In order to correct for the slow hydrolysis of ϵ-acetimidyllysine to lysine, the amounts of ϵ-acetimidyllysine at the various times are extrapolated (first-order plot) to zero time.


Chemico-Biological Interactions | 2009

Activity of Yeast Alcohol Dehydrogenases on Benzyl Alcohols and Benzaldehydes. Characterization of ADH1 from Saccharomyces carlsbergensis and Transition State Analysis

Suresh Pal; Doo-Hong Park; Bryce V. Plapp

The substrate specificities of yeast alcohol dehydrogenases I and II from Saccharomyces cerevisiae (SceADH1 and SceADH2) and Saccharomyces carlsbergensis (ScbADH1) were studied. For this work, the gene for the S. carlsbergensis ADH1 was cloned, sequenced and expressed. The amino acid sequence of ScbADH1 differs at four positions as compared to SceADH1, including substitutions of two glutamine residues with glutamic acid residues, and has the same sequence as the commercial yeast enzyme, which apparently is prepared from S. carlsbergensis. The electrophoretic mobilities of ScbADH1, SceADH2 and commercial ADH are similar. The kinetics and specificities of ScbADH1 and SceADH1 acting on branched, long-chain and benzyl alcohols are very similar, but the catalytic efficiency of SceADH2 is about 10-100-fold higher on these substrates. A three-dimensional structure of SceADH1 shows that the substrate binding pocket has Met-270, whereas SceADH2 has Leu-270, which allows larger substrates to bind. The reduction of a series of p-substituted benzaldehydes catalyzed by SceADH2 is significantly enhanced by electron-withdrawing groups, whereas the oxidation of p-substituted aromatic alcohols may be only slightly affected by the substituents. The substituent effects on catalysis generally reflect the effects on the equilibrium constant for the reaction, where electron-withdrawing substituents favor alcohol. The results are consistent with a transition state that is electronically similar to the alcohol, supporting previous results obtained with commercial yeast ADH.

Collaboration


Dive into the Bryce V. Plapp's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Matthew R. Parsek

Indiana University Bloomington

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge