Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Bryn M. Owen is active.

Publication


Featured researches published by Bryn M. Owen.


Nature Medicine | 2013

FGF21 regulates metabolism and circadian behavior by acting on the nervous system

Angie L. Bookout; Marleen H.M. de Groot; Bryn M. Owen; Syann Lee; Laurent Gautron; Heather L Lawrence; Xunshan Ding; Joel K. Elmquist; Joseph S. Takahashi; David J. Mangelsdorf; Steven A. Kliewer

Fibroblast growth factor 21 (FGF21) is a hepatokine that acts as a global starvation signal to modulate fuel partitioning and metabolism, and repress growth1; however the site of action of these diverse effects remains unclear. FGF21 signals through a heteromeric cell surface receptor composed of one of three FGF receptors (FGFR1c, 2c, or 3c) in complex with β-Klotho2-4, a single-pass transmembrane protein that is enriched in metabolic tissues5. Here we show that in addition to its known effects on peripheral metabolism, FGF21 increases systemic glucocorticoid levels, suppresses physical activity, and alters circadian behavior, all features of the adaptive starvation response. These effects are mediated through β-Klotho expression in the suprachiasmatic nucleus (SCN) of the hypothalamus and the dorsal vagal complex (DVC) of the hindbrain. Mice lacking the β-Klotho gene (Klb) in these regions are refractory to these effects, as well as those on metabolism, insulin, and growth. These findings demonstrate a crucial role for the nervous system in mediating the diverse physiologic and pharmacologic actions of FGF21.Fibroblast growth factor 21 (FGF21) is a hepatokine that acts as a global starvation signal to modulate fuel partitioning and metabolism and repress growth; however, the site of action of these diverse effects remains unclear. FGF21 signals through a heteromeric cell-surface receptor composed of one of three FGF receptors (FGFR1c, FGFR2c or FGFR3c) in complex with β-Klotho, a single-pass transmembrane protein that is enriched in metabolic tissues. Here we show that in addition to its known effects on peripheral metabolism, FGF21 increases systemic glucocorticoid levels, suppresses physical activity and alters circadian behavior, which are all features of the adaptive starvation response. These effects are mediated through β-Klotho expression in the suprachiasmatic nucleus of the hypothalamus and the dorsal vagal complex of the hindbrain. Mice lacking the gene encoding β-Klotho (Klb) in these regions are refractory to these effects, as well as those on metabolism, insulin and growth. These findings demonstrate a crucial role for the nervous system in mediating the diverse physiologic and pharmacologic actions of FGF21.


Cell Metabolism | 2014

FGF21 Acts Centrally to Induce Sympathetic Nerve Activity, Energy Expenditure, and Weight Loss

Bryn M. Owen; Xunshan Ding; Donald A. Morgan; Katie C. Coate; Angie L. Bookout; Kamal Rahmouni; Steven A. Kliewer; David J. Mangelsdorf

The mechanism by which pharmacologic administration of the hormone FGF21 increases energy expenditure to cause weight loss in obese animals is unknown. Here we report that FGF21 acts centrally to exert its effects on energy expenditure and body weight in obese mice. Using tissue-specific knockout mice, we show that βKlotho, the obligate coreceptor for FGF21, is required in the nervous system for these effects. FGF21 stimulates sympathetic nerve activity to brown adipose tissue through a mechanism that depends on the neuropeptide corticotropin-releasing factor. Our findings provide an unexpected mechanistic explanation for the strong pharmacologic effects of FGF21 on energy expenditure and weight loss in obese animals.


Trends in Endocrinology and Metabolism | 2015

Tissue-specific actions of the metabolic hormones FGF15/19 and FGF21

Bryn M. Owen; David J. Mangelsdorf; Steven A. Kliewer

Fibroblast growth factors (FGFs) 15/19 and 21 belong to a subfamily of FGFs that function as hormones. Produced in response to specific nutritional cues, they act on overlapping sets of cell surface receptors composed of classic FGF receptors in complex with βKlotho, and regulate metabolism and related processes during periods of fluctuating energy availability. Pharmacologically, both FGF15/19 and FGF21 cause weight loss and improve both insulin-sensitivity and lipid parameters in rodent and primate models of metabolic disease. Recently, FGF21 was shown to have similar effects in obese patients with type 2 diabetes. We discuss here emerging concepts in FGF15/19 and FGF21 tissue-specific actions and critically assess their putative role as candidate targets for treating metabolic disease.


Nature Medicine | 2013

FGF21 contributes to neuroendocrine control of female reproduction

Bryn M. Owen; Angie L. Bookout; Xunshan Ding; Vicky Y. Lin; Stan Atkin; Laurent Gautron; Steven A. Kliewer; David J. Mangelsdorf

Preventing reproduction during nutritional deprivation is an adaptive process that is conserved and essential for the survival of species. In mammals, the mechanisms that inhibit fertility during starvation are complex and incompletely understood. Here we show that exposure of female mice to fibroblast growth factor 21 (FGF21), a fasting-induced hepatokine, mimics infertility secondary to starvation. Mechanistically, FGF21 acts on the suprachiasmatic nucleus (SCN) in the hypothalamus to suppress the vasopressin-kisspeptin signaling cascade, thereby inhibiting the proestrus surge in luteinizing hormone. Mice lacking the FGF21 co-receptor, β-Klotho, in the SCN are refractory to the inhibitory effect of FGF21 on female fertility. Thus, FGF21 defines an important liver-neuroendocrine axis that modulates female reproduction in response to nutritional challenge.


Cell Metabolism | 2016

A Long-Acting FGF21 Molecule, PF-05231023, Decreases Body Weight and Improves Lipid Profile in Non-human Primates and Type 2 Diabetic Subjects

Saswata Talukdar; Yingjiang Zhou; Dongmei Li; Michelle Rossulek; Jennifer Q. Dong; Veena R. Somayaji; Yan Weng; Ronald W. Clark; Adhiraj Lanba; Bryn M. Owen; Martin B. Brenner; Jeffrey K. Trimmer; Kathryn E. Gropp; Jeffrey R. Chabot; Derek M. Erion; Timothy P. Rolph; Bryan Goodwin; Roberto A. Calle

FGF21 plays a central role in energy, lipid, and glucose homeostasis. To characterize the pharmacologic effects of FGF21, we administered a long-acting FGF21 analog, PF-05231023, to obese cynomolgus monkeys. PF-05231023 caused a marked decrease in food intake that led to reduced body weight. To assess the effects of PF-05231023 in humans, we conducted a placebo-controlled, multiple ascending-dose study in overweight/obese subjects with type 2 diabetes. PF-05231023 treatment resulted in a significant decrease in body weight, improved plasma lipoprotein profile, and increased adiponectin levels. Importantly, there were no significant effects of PF-05231023 on glycemic control. PF-05231023 treatment led to dose-dependent changes in multiple markers of bone formation and resorption and elevated insulin-like growth factor 1. The favorable effects of PF-05231023 on body weight support further evaluation of this molecule for the treatment of obesity. Longer studies are needed to assess potential direct effects of FGF21 on bone in humans.


Cell Metabolism | 2016

FGF21 Regulates Sweet and Alcohol Preference.

Saswata Talukdar; Bryn M. Owen; Parkyong Song; Genaro Hernandez; Yuan Zhang; Yingjiang Zhou; William T. Scott; Bhavna Paratala; Tod Turner; Andrew H. Smith; Barbara L. Bernardo; Christian P. Müller; Hao Tang; David J. Mangelsdorf; Bryan Goodwin; Steven A. Kliewer

Fibroblast growth factor 21 (FGF21) is a hormone induced by various metabolic stresses, including ketogenic and high-carbohydrate diets, that regulates energy homeostasis. In humans, SNPs in and around the FGF21 gene have been associated with macronutrient preference, including carbohydrate, fat, and protein intake. Here we show that FGF21 administration markedly reduces sweet and alcohol preference in mice and sweet preference in cynomolgus monkeys. In mice, these effects require the FGF21 co-receptor β-Klotho in the central nervous system and correlate with reductions in dopamine concentrations in the nucleus accumbens. Since analogs of FGF21 are currently undergoing clinical evaluation for the treatment of obesity and type 2 diabetes, our findings raise the possibility that FGF21 administration could affect nutrient preference and other reward behaviors in humans.


Hepatology | 2010

Raised hepatic bile acid concentrations during pregnancy in mice are associated with reduced farnesoid X receptor function.

Alexandra Milona; Bryn M. Owen; Jeremy Cobbold; Ellen C.L. Willemsen; I J Cox; Mohamed Boudjelal; William Cairns; Kristina Schoonjans; Simon D. Taylor-Robinson; Leo W. J. Klomp; Malcolm G. Parker; Roger White; Saskia W.C. van Mil; Catherine Williamson

Pregnancy alters bile acid homeostasis and can unmask cholestatic disease in genetically predisposed but otherwise asymptomatic individuals. In this report, we show that normal pregnant mice have raised hepatic bile acid levels in the presence of procholestatic gene expression. The nuclear receptor farnesoid X receptor (FXR) regulates the transcription of the majority of these genes, and we show that both ablation and activation of Fxr prevent the accumulation of hepatic bile acids during pregnancy. These observations suggest that the function of Fxr may be perturbed during gestation. In subsequent in vitro experiments, serum from pregnant mice and humans was found to repress expression of the Fxr target gene, small heterodimer partner (Shp), in liver‐derived Fao cells. Estradiol or estradiol metabolites may contribute to this effect because coincubation with the estrogen receptor (ER) antagonist fulvestrant (ICI 182780) abolished the repressive effects on Shp expression. Finally, we report that ERα interacts with FXR in an estradiol‐dependent manner and represses its function in vitro. Conclusion: Ligand‐activated ERα may inhibit FXR function during pregnancy and result in procholestatic gene expression and raised hepatic bile acid levels. We propose that this could cause intrahepatic cholestasis of pregnancy in genetically predisposed individuals. HEPATOLOGY 2010


Journal of Clinical Investigation | 2013

Maternal cholestasis during pregnancy programs metabolic disease in offspring

Georgia Papacleovoulou; Shadi Abu-Hayyeh; Evanthia Nikolopoulou; Oscar Briz; Bryn M. Owen; Vanya Nikolova; Caroline Ovadia; Xiao Huang; Marja Vääräsmäki; Marc Baumann; Eugene Jansen; Christiane Albrecht; Marjo-Riitta Järvelin; Jose J.G. Marin; A.S. Knisely; Catherine Williamson

The intrauterine environment is a major contributor to increased rates of metabolic disease in adults. Intrahepatic cholestasis of pregnancy (ICP) is a liver disease of pregnancy that affects 0.5%-2% of pregnant women and is characterized by increased bile acid levels in the maternal serum. The influence of ICP on the metabolic health of offspring is unknown. We analyzed the Northern Finland birth cohort 1985-1986 database and found that 16-year-old children of mothers with ICP had altered lipid profiles. Males had increased BMI, and females exhibited increased waist and hip girth compared with the offspring of uncomplicated pregnancies. We further investigated the effect of maternal cholestasis on the metabolism of adult offspring in the mouse. Females from cholestatic mothers developed a severe obese, diabetic phenotype with hepatosteatosis following a Western diet, whereas matched mice not exposed to cholestasis in utero did not. Female littermates were susceptible to metabolic disease before dietary challenge. Human and mouse studies showed an accumulation of lipids in the fetoplacental unit and increased transplacental cholesterol transport in cholestatic pregnancy. We believe this is the first report showing that cholestatic pregnancy in the absence of altered maternal BMI or diabetes can program metabolic disease in the offspring.


American Journal of Physiology-gastrointestinal and Liver Physiology | 2010

The normal mechanisms of pregnancy-induced liver growth are not maintained in mice lacking the bile acid sensor Fxr

Alexandra Milona; Bryn M. Owen; Saskia W.C. van Mil; Dirk Dormann; Chikage Mataki; Mohamed Boudjelal; William Cairns; Kristina Schoonjans; Stuart Milligan; Malcolm G. Parker; Roger White; Catherine Williamson

Rodents undergo gestational hepatomegaly to meet the increased metabolic demands on the maternal liver during pregnancy. This is an important physiological process, but the mechanisms and signals driving pregnancy-induced liver growth are not known. Here, we show that liver growth during pregnancy precedes maternal body weight gain, is proportional to fetal number, and is a result of hepatocyte hypertrophy associated with cell-cycle progression, polyploidy, and altered expression of cell-cycle regulators p53, Cyclin-D1, and p27. Because circulating reproductive hormones and bile acids are raised in normal pregnant women and can cause liver growth in rodents, these compounds are candidates for the signal driving gestational liver enlargement in rodents. Administration of pregnancy levels of reproductive hormones was not sufficient to cause liver growth, but mouse pregnancy was associated with increased serum bile acid levels. It is known that the bile acid sensor Fxr is required for normal recovery from partial hepatectomy, and we demonstrate that Fxr(-/-) mice undergo gestational liver growth by adaptive hepatocyte hyperplasia. This is the first identification of any component that is required to maintain the normal mechanisms of gestational hepatomegaly and also implicates Fxr in a physiologically normal process that involves control of the hepatocyte cell cycle. Understanding pregnancy-induced hepatocyte hypertrophy in mice could suggest mechanisms for safely increasing functional liver capacity in women during increased metabolic demand.


Molecular Endocrinology | 2015

Glucocorticoids Regulate the Metabolic Hormone FGF21 in a Feed-Forward Loop

Rucha Patel; Angie L. Bookout; Lilia Magomedova; Bryn M. Owen; Giulia P. Consiglio; Makoto Shimizu; Yuan Zhang; David J. Mangelsdorf; Steven A. Kliewer; Carolyn L. Cummins

Hormones such as fibroblast growth factor 21 (FGF21) and glucocorticoids (GCs) play crucial roles in coordinating the adaptive starvation response. Here we examine the interplay between these hormones. It was previously shown that FGF21 induces corticosterone levels in mice by acting on the brain. We now show that this induces the expression of genes required for GC synthesis in the adrenal gland. FGF21 also increases corticosterone secretion from the adrenal in response to ACTH. We further show that the relationship between FGF21 and GCs is bidirectional. GCs induce Fgf21 expression in the liver by acting on the GC receptor (GR). The GR binds in a ligand-dependent manner to a noncanonical GR response element located approximately 4.4 kb upstream of the Fgf21 transcription start site. The GR cooperates with the nuclear fatty acid receptor, peroxisome proliferator-activated receptor-α, to stimulate Fgf21 transcription. GR and peroxisome proliferator-activated receptor-α ligands have additive effects on Fgf21 expression both in vivo and in primary cultures of mouse hepatocytes. We conclude that FGF21 and GCs regulate each others production in a feed-forward loop and suggest that this provides a mechanism for bypassing negative feedback on the hypothalamic-pituitary-adrenal axis to allow sustained gluconeogenesis during starvation.

Collaboration


Dive into the Bryn M. Owen's collaboration.

Top Co-Authors

Avatar

David J. Mangelsdorf

University of Texas Southwestern Medical Center

View shared research outputs
Top Co-Authors

Avatar

Steven A. Kliewer

University of Texas Southwestern Medical Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Angie L. Bookout

University of Texas Southwestern Medical Center

View shared research outputs
Top Co-Authors

Avatar

Roger White

Imperial College London

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Xunshan Ding

University of Texas Southwestern Medical Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge