Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Xunshan Ding is active.

Publication


Featured researches published by Xunshan Ding.


Proceedings of the National Academy of Sciences of the United States of America | 2009

FGF21 induces PGC-1α and regulates carbohydrate and fatty acid metabolism during the adaptive starvation response

Matthew J. Potthoff; Takeshi Inagaki; Santhosh Satapati; Xunshan Ding; Tianteng He; Regina Goetz; Moosa Mohammadi; Brian N. Finck; David J. Mangelsdorf; Steven A. Kliewer; Shawn C. Burgess

The liver plays a crucial role in mobilizing energy during nutritional deprivation. During the early stages of fasting, hepatic glycogenolysis is a primary energy source. As fasting progresses and glycogen stores are depleted, hepatic gluconeogenesis and ketogenesis become major energy sources. Here, we show that fibroblast growth factor 21 (FGF21), a hormone that is induced in liver by fasting, induces hepatic expression of peroxisome proliferator-activated receptor γ coactivator protein-1α (PGC-1α), a key transcriptional regulator of energy homeostasis, and causes corresponding increases in fatty acid oxidation, tricarboxylic acid cycle flux, and gluconeogenesis without increasing glycogenolysis. Mice lacking FGF21 fail to fully induce PGC-1α expression in response to a prolonged fast and have impaired gluconeogenesis and ketogenesis. These results reveal an unexpected relationship between FGF21 and PGC-1α and demonstrate an important role for FGF21 in coordinately regulating carbohydrate and fatty acid metabolism during the progression from fasting to starvation.


Molecular Endocrinology | 2010

Research Resource: Comprehensive Expression Atlas of the Fibroblast Growth Factor System in Adult Mouse

Klementina Fon Tacer; Angie L. Bookout; Xunshan Ding; Hiroshi Kurosu; George B. John; Lei Wang; Regina Goetz; Moosa Mohammadi; Makoto Kuro-o; David J. Mangelsdorf; Steven A. Kliewer

Although members of the fibroblast growth factor (FGF) family and their receptors have well-established roles in embryogenesis, their contributions to adult physiology remain relatively unexplored. Here, we use real-time quantitative PCR to determine the mRNA expression patterns of all 22 FGFs, the seven principal FGF receptors (FGFRs), and the three members of the Klotho family of coreceptors in 39 different mouse tissues. Unsupervised hierarchical cluster analysis of the mRNA expression data reveals that most FGFs and FGFRs fall into two groups the expression of which is enriched in either the central nervous system or reproductive and gastrointestinal tissues. Interestingly, the FGFs that can act as endocrine hormones, including FGF15/19, FGF21, and FGF23, cluster in a third group that does not include any FGFRs, underscoring their roles in signaling between tissues. We further show that the most recently identified Klotho family member, Lactase-like, is highly and selectively expressed in brown adipose tissue and eye and can function as an additional coreceptor for FGF19. This FGF atlas provides an important resource for guiding future studies to elucidate the physiological functions of FGFs in adult animals.


Proceedings of the National Academy of Sciences of the United States of America | 2012

Fibroblast growth factor 21 promotes bone loss by potentiating the effects of peroxisome proliferator-activated receptor γ

Wei Wei; Paul A. Dutchak; Xunde Wang; Xunshan Ding; Xueqian Wang; Angie L. Bookout; Regina Goetz; Moosa Mohammadi; Robert D. Gerard; Paul C. Dechow; David J. Mangelsdorf; Steven A. Kliewer; Yihong Wan

The endocrine hormone fibroblast growth factor 21 (FGF21) is a powerful modulator of glucose and lipid metabolism and a promising drug for type 2 diabetes. Here we identify FGF21 as a potent regulator of skeletal homeostasis. Both genetic and pharmacologic FGF21 gain of function lead to a striking decrease in bone mass. In contrast, FGF21 loss of function leads to a reciprocal high-bone-mass phenotype. Mechanistically, FGF21 inhibits osteoblastogenesis and stimulates adipogenesis from bone marrow mesenchymal stem cells by potentiating the activity of peroxisome proliferator-activated receptor γ (PPAR-γ). Consequently, FGF21 deletion prevents the deleterious bone loss side effect of the PPAR-γ agonist rosiglitazone. Therefore, FGF21 is a critical rheostat for bone turnover and a key integrator of bone and energy metabolism. These results reveal that skeletal fragility may be an undesirable consequence of chronic FGF21 administration.


Nature Medicine | 2013

FGF21 regulates metabolism and circadian behavior by acting on the nervous system

Angie L. Bookout; Marleen H.M. de Groot; Bryn M. Owen; Syann Lee; Laurent Gautron; Heather L Lawrence; Xunshan Ding; Joel K. Elmquist; Joseph S. Takahashi; David J. Mangelsdorf; Steven A. Kliewer

Fibroblast growth factor 21 (FGF21) is a hepatokine that acts as a global starvation signal to modulate fuel partitioning and metabolism, and repress growth1; however the site of action of these diverse effects remains unclear. FGF21 signals through a heteromeric cell surface receptor composed of one of three FGF receptors (FGFR1c, 2c, or 3c) in complex with β-Klotho2-4, a single-pass transmembrane protein that is enriched in metabolic tissues5. Here we show that in addition to its known effects on peripheral metabolism, FGF21 increases systemic glucocorticoid levels, suppresses physical activity, and alters circadian behavior, all features of the adaptive starvation response. These effects are mediated through β-Klotho expression in the suprachiasmatic nucleus (SCN) of the hypothalamus and the dorsal vagal complex (DVC) of the hindbrain. Mice lacking the β-Klotho gene (Klb) in these regions are refractory to these effects, as well as those on metabolism, insulin, and growth. These findings demonstrate a crucial role for the nervous system in mediating the diverse physiologic and pharmacologic actions of FGF21.Fibroblast growth factor 21 (FGF21) is a hepatokine that acts as a global starvation signal to modulate fuel partitioning and metabolism and repress growth; however, the site of action of these diverse effects remains unclear. FGF21 signals through a heteromeric cell-surface receptor composed of one of three FGF receptors (FGFR1c, FGFR2c or FGFR3c) in complex with β-Klotho, a single-pass transmembrane protein that is enriched in metabolic tissues. Here we show that in addition to its known effects on peripheral metabolism, FGF21 increases systemic glucocorticoid levels, suppresses physical activity and alters circadian behavior, which are all features of the adaptive starvation response. These effects are mediated through β-Klotho expression in the suprachiasmatic nucleus of the hypothalamus and the dorsal vagal complex of the hindbrain. Mice lacking the gene encoding β-Klotho (Klb) in these regions are refractory to these effects, as well as those on metabolism, insulin and growth. These findings demonstrate a crucial role for the nervous system in mediating the diverse physiologic and pharmacologic actions of FGF21.


Cell Metabolism | 2014

FGF21 Acts Centrally to Induce Sympathetic Nerve Activity, Energy Expenditure, and Weight Loss

Bryn M. Owen; Xunshan Ding; Donald A. Morgan; Katie C. Coate; Angie L. Bookout; Kamal Rahmouni; Steven A. Kliewer; David J. Mangelsdorf

The mechanism by which pharmacologic administration of the hormone FGF21 increases energy expenditure to cause weight loss in obese animals is unknown. Here we report that FGF21 acts centrally to exert its effects on energy expenditure and body weight in obese mice. Using tissue-specific knockout mice, we show that βKlotho, the obligate coreceptor for FGF21, is required in the nervous system for these effects. FGF21 stimulates sympathetic nerve activity to brown adipose tissue through a mechanism that depends on the neuropeptide corticotropin-releasing factor. Our findings provide an unexpected mechanistic explanation for the strong pharmacologic effects of FGF21 on energy expenditure and weight loss in obese animals.


Nature Medicine | 2013

FGF21 contributes to neuroendocrine control of female reproduction

Bryn M. Owen; Angie L. Bookout; Xunshan Ding; Vicky Y. Lin; Stan Atkin; Laurent Gautron; Steven A. Kliewer; David J. Mangelsdorf

Preventing reproduction during nutritional deprivation is an adaptive process that is conserved and essential for the survival of species. In mammals, the mechanisms that inhibit fertility during starvation are complex and incompletely understood. Here we show that exposure of female mice to fibroblast growth factor 21 (FGF21), a fasting-induced hepatokine, mimics infertility secondary to starvation. Mechanistically, FGF21 acts on the suprachiasmatic nucleus (SCN) in the hypothalamus to suppress the vasopressin-kisspeptin signaling cascade, thereby inhibiting the proestrus surge in luteinizing hormone. Mice lacking the FGF21 co-receptor, β-Klotho, in the SCN are refractory to the inhibitory effect of FGF21 on female fertility. Thus, FGF21 defines an important liver-neuroendocrine axis that modulates female reproduction in response to nutritional challenge.


Molecular and Cellular Biology | 2012

Klotho Coreceptors Inhibit Signaling by Paracrine Fibroblast Growth Factor 8 Subfamily Ligands

Regina Goetz; Mutsuko Ohnishi; Xunshan Ding; Hiroshi Kurosu; Lei Wang; Junko Akiyoshi; Jinghong Ma; Weiming Gai; Yisrael Sidis; Nelly Pitteloud; Makoto Kuro-o; Mohammed S. Razzaque; Moosa Mohammadi

ABSTRACT It has been recently established that Klotho coreceptors associate with fibroblast growth factor (FGF) receptor tyrosine kinases (FGFRs) to enable signaling by endocrine-acting FGFs. However, the molecular interactions leading to FGF-FGFR-Klotho ternary complex formation remain incompletely understood. Here, we show that in contrast to αKlotho, βKlotho binds its cognate endocrine FGF ligand (FGF19 or FGF21) and FGFR independently through two distinct binding sites. FGF19 and FGF21 use their respective C-terminal tails to bind to a common binding site on βKlotho. Importantly, we also show that Klotho coreceptors engage a conserved hydrophobic groove in the immunoglobulin-like domain III (D3) of the “c” splice isoform of FGFR. Intriguingly, this hydrophobic groove is also used by ligands of the paracrine-acting FGF8 subfamily for receptor binding. Based on this binding site overlap, we conclude that while Klotho coreceptors enhance binding affinity of FGFR for endocrine FGFs, they actively suppress binding of FGF8 subfamily ligands to FGFR.


Cell Metabolism | 2015

Detection of FGF15 in Plasma by Stable Isotope Standards and Capture by Anti-peptide Antibodies and Targeted Mass Spectrometry

Takeshi Katafuchi; Daria Esterházy; Andrew Lemoff; Xunshan Ding; Varun Sondhi; Steven A. Kliewer; Hamid Mirzaei; David J. Mangelsdorf

Fibroblast growth factor 15 (FGF15) has been proposed as a postprandial hormone that signals from intestine to liver to regulate bile acid and carbohydrate homeostasis. However, detecting FGF15 in blood using conventional techniques has proven difficult. Here, we describe a stable isotope standards and capture by anti-peptide antibodies (SISCAPA) assay that combines immuno-enrichment with selected reaction monitoring (SRM) mass spectrometry to overcome this issue. Using this assay, we show that FGF15 circulates in plasma in an FXR and circadian rhythm-dependent manner at concentrations that activate its receptor. Consistent with the proposed endocrine role for FGF15 in liver, mice lacking hepatocyte expression of the obligate FGF15 co-receptor, β-Klotho, have increased bile acid synthesis and reduced glycogen storage despite having supraphysiological plasma FGF15 concentrations. Collectively, these data demonstrate that FGF15 functions as a hormone and highlight the utility of SISCAPA-SRM as a sensitive assay for detecting low-abundance proteins in plasma.


Cell Metabolism | 2015

Short ArticleDetection of FGF15 in Plasma by Stable Isotope Standards and Capture by Anti-peptide Antibodies and Targeted Mass Spectrometry

Takeshi Katafuchi; Daria Esterházy; Andrew Lemoff; Xunshan Ding; Varun Sondhi; Steven A. Kliewer; Hamid Mirzaei; David J. Mangelsdorf

Fibroblast growth factor 15 (FGF15) has been proposed as a postprandial hormone that signals from intestine to liver to regulate bile acid and carbohydrate homeostasis. However, detecting FGF15 in blood using conventional techniques has proven difficult. Here, we describe a stable isotope standards and capture by anti-peptide antibodies (SISCAPA) assay that combines immuno-enrichment with selected reaction monitoring (SRM) mass spectrometry to overcome this issue. Using this assay, we show that FGF15 circulates in plasma in an FXR and circadian rhythm-dependent manner at concentrations that activate its receptor. Consistent with the proposed endocrine role for FGF15 in liver, mice lacking hepatocyte expression of the obligate FGF15 co-receptor, β-Klotho, have increased bile acid synthesis and reduced glycogen storage despite having supraphysiological plasma FGF15 concentrations. Collectively, these data demonstrate that FGF15 functions as a hormone and highlight the utility of SISCAPA-SRM as a sensitive assay for detecting low-abundance proteins in plasma.


PLOS ONE | 2013

Metabolic Hormone FGF21 Is Induced in Ground Squirrels during Hibernation but Its Overexpression Is Not Sufficient to Cause Torpor

Bethany T. Nelson; Xunshan Ding; Jamie Boney-Montoya; Robert D. Gerard; Steven A. Kliewer; Matthew T. Andrews

Hibernation is a natural adaptation that allows certain mammals to survive physiological extremes that are lethal to humans. Near freezing body temperatures, heart rates of 3–10 beats per minute, absence of food consumption, and depressed metabolism are characteristic of hibernation torpor bouts that are periodically interrupted by brief interbout arousals (IBAs). The molecular basis of torpor induction is unknown, however starved mice overexpressing the metabolic hormone fibroblast growth factor 21 (FGF21) promote fat utilization, reduce body temperature, and readily enter torpor–all hallmarks of mammalian hibernation. In this study we cloned FGF21 from the naturally hibernating thirteen-lined ground squirrel (Ictidomys tridecemlineatus) and found that levels of FGF21 mRNA in liver and FGF21 protein in serum are elevated during hibernation torpor bouts and significantly elevated during IBAs compared to summer active animals. The effects of artificially elevating circulating FGF21 concentrations 50 to 100-fold via adenoviral-mediated overexpression were examined at three different times of the year. This is the first time that a transgenic approach has been used in a natural hibernator to examine mechanistic aspects of hibernation. Surgically implanted transmitters measured various metrics of the hibernation phenotype over a 7-day period including changes in motor activity, heart rate and core body temperature. In April fed-state animals, FGF21 overexpression decreased blood insulin and free fatty acid concentrations, effects similar to those seen in obese mice. However, elevated FGF21 concentrations did not cause torpor in these fed-state animals nor did they cause torpor or affect metabolic parameters in fasted-state animals in March/April, August or October. We conclude that FGF21 is strongly regulated during torpor and IBA but that its overexpression is not sufficient to cause torpor in naturally hibernating ground squirrels.

Collaboration


Dive into the Xunshan Ding's collaboration.

Top Co-Authors

Avatar

Steven A. Kliewer

University of Texas Southwestern Medical Center

View shared research outputs
Top Co-Authors

Avatar

David J. Mangelsdorf

University of Texas Southwestern Medical Center

View shared research outputs
Top Co-Authors

Avatar

Angie L. Bookout

University of Texas Southwestern Medical Center

View shared research outputs
Top Co-Authors

Avatar

Moosa Mohammadi

Salk Institute for Biological Studies

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Bryn M. Owen

University of Texas Southwestern Medical Center

View shared research outputs
Top Co-Authors

Avatar

Lei Wang

University of Texas Southwestern Medical Center

View shared research outputs
Top Co-Authors

Avatar

Andrew Lemoff

University of Texas Southwestern Medical Center

View shared research outputs
Top Co-Authors

Avatar

Hamid Mirzaei

University of Texas Southwestern Medical Center

View shared research outputs
Top Co-Authors

Avatar

Hiroshi Kurosu

University of Texas Southwestern Medical Center

View shared research outputs
Researchain Logo
Decentralizing Knowledge