Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Bulat Kenessov is active.

Publication


Featured researches published by Bulat Kenessov.


Analytica Chimica Acta | 2010

Screening of transformation products in soils contaminated with unsymmetrical dimethylhydrazine using headspace SPME and GC-MS

Bulat Kenessov; Jacek A. Koziel; Tim Grotenhuis; Lars Carlsen

The paper describes a novel SPME-based approach for sampling and analysis of transformation products of highly reactive and toxic unsymmetrical dimethylhydrazine (UDMH) which is used as a fuel in many Russian, European, Indian, and Chinese heavy cargo carrier rockets. The effects of several parameters were studied to optimize analyte recovery. It was found that the 85 microm Carboxen/polydimethylsiloxane fiber coating provides the highest selectivity for selected UDMH transformation products. Optimal sampling/sample preparation parameters were determined to be 1-h soil headspace sampling time at 40 degrees C. The GC inlet temperature was optimized to 170 degrees C held for 0.1 min, then 1 degrees C s(-1) ramp to 250 degrees C where it was held for 40 min. Temperature programming resulted in a fast desorption along with minimal chemical transformation in the GC inlet. SPME was very effective extracting UDMH transformation products from soil samples contaminated with rocket fuel. The use of SPME resulted in high sensitivity, speed, small labor consumption due to an automation and simplicity of use. It was shown that water addition to soil leads to a significant decrease of recovery of almost all target transformation products of UDMH. The use of SPME for sampling and sample preparation resulted in detection of the total of 21 new compounds that are relevant to the UDMH transformation in soils. In addition, the number of confirmed transformation products of UDMH increased from 15 to 27. This sampling/sample preparation approach can be recommended for environmental assessment of soil samples from areas affected by space rocket activity.


Environmental Toxicology and Pharmacology | 2009

A QSAR/QSTR study on the human health impact of the rocket fuel 1,1-dimethyl hydrazine and its transformation products: multicriteria hazard ranking based on partial order methodologies.

Lars Carlsen; Bulat Kenessov; Svetlana Batyrbekova

The possible impact of the rocket fuel 1,1-dimethyl hydrazine (heptyl) (1) and its transformation products on human health has been studied using (Quantitative) Structure Activity/Toxicity ((Q)SAR/(Q)STR) modelling, including both ADME models and models for acute toxicity, organ specific adverse haematological effects, the cardiovascular and gastrointestinal systems, the kidneys, the liver and the lungs, as well as a model predicting the biological activity of the compounds. It was predicted that all compounds studied are readily bioavailable through oral intake and that significant amounts of the compounds will be freely available in the systemic circulation. In general, the compounds are not predicted to be acutely toxic apart from hydrogen cyanide, whereas several compounds are predicted to cause adverse organ specific human health effects. Further, several compounds are predicted to exhibit high probabilities for potential carcinogenicity, mutagenicity, teratogenicity and/or embryotoxicity. The compounds were ranked based on their predicted human health impact using partial order ranking methodologies that highlight which compounds on a cumulative basis should receive the major attention, i.e., N-nitroso dimethyl amine, 1,1,4,4-tetramethyl tetrazene, trimethyl, trimethyl hydrazine, acetaldehyde dimethyl hydrazone, 1, 1-formyl 2,2-dimethyl hydrazine and formaldehyde dimethyl hydrazone, respectively.


Science of The Total Environment | 2012

Transformation products of 1,1-dimethylhydrazine and their distribution in soils of fall places of rocket carriers in Central Kazakhstan

Bulat Kenessov; Mereke Alimzhanova; Yerbolat Sailaukhanuly; Nassiba Baimatova; Madi Abilev; Svetlana Batyrbekova; Lars Carlsen; Akyl Tulegenov; Mikhail Nauryzbayev

In our research, three fall places of first stages of Proton rockets have been studied for the presence and distribution of transformation products of 1,1-dimethylhydrazine (1,1-DMH). Results of identification of transformation products of 1,1-DMH in real soil samples polluted due to rocket fuel spills allowed to detect 18 earlier unknown metabolites of 1,1-DMH being formed only under field conditions. According to the results of quantitative analyses, maximum concentrations of 1-methyl-1H-1,2,4-triazole made up 57.3, 44.9 and 13.3 mg kg(-1), of 1-ethyl-1H-1,2,4-triazole - 5.45, 3.66 and 0.66 mg kg(-1), of 1,3-dimethyl-1H-1,2,4-triazole - 24.0, 17.8 and 4.9 mg kg(-1) in fall places 1, 2 and 3, respectively. 4-Methyl-4H-1,2,4-triazole was detected only in fall places 2 and 3 where its maximum concentrations made up 4.2 and 0.66 mg kg(-1), respectively. The pollution of soils with transformation products of 1,1-DMH was only detected in epicenters of fall places having a diameter of 8 to10 m where rocket boosters landed. The results of a detailed study of distribution of 1,1-DMH transformation products along the soil profile indicate that transformation products can migrate down to the depth of 120 cm, The highest concentrations of 1,1-DMH transformation products were detected, as a rule, at the depth 20 to 60 cm. However, this index can vary depending on the compound, humidity and physical properties of soil, landscape features and other conditions. In the surface layer, as a rule, only semi-volatile products of transformation were detected which was caused by fast evaporation and biodegradation of volatile metabolites.


Environmental health insights | 2008

A QSAR/QSTR Study on the Environmental Health Impact by the Rocket Fuel 1,1-Dimethyl Hydrazine and its Transformation Products

Lars Carlsen; Bulat Kenessov; Svetlana Batyrbekova

QSAR/QSTR modelling constitutes an attractive approach to preliminary assessment of the impact on environmental health by a primary pollutant and the suite of transformation products that may be persistent in and toxic to the environment. The present paper studies the impact on environmental health by residuals of the rocket fuel 1,1-dimethyl hydrazine (heptyl) and its transformation products. The transformation products, comprising a variety of nitrogen containing compounds are suggested all to possess a significant migration potential. In all cases the compounds were found being rapidly biodegradable. However, unexpected low microbial activity may cause significant changes. None of the studied compounds appear to be bioaccumulating. Apart from substances with an intact hydrazine structure or hydrazone structure the transformation products in general display rather low environmental toxicities. Thus, it is concluded that apparently further attention should be given to tri- and tetramethyl hydrazine and 1-formyl 2,2-dimethyl hydrazine as well as to the hydrazones of formaldehyde and acetaldehyde as these five compounds may contribute to the overall environmental toxicity of residual rocket fuel and its transformation products.


Environmental Toxicology and Pharmacology | 2009

Assessment of the mutagenic effect of 1,1-dimethyl hydrazine.

Lars Carlsen; Bulat Kenessov; Svetlana Batyrbekova; Saule Zh. Kolumbaeva; Tamara Shalakhmetova

The mutagenic effect of the rocket fuel 1,1-dimethyl hydrazine has been studied experimentally and compared to the well-recognized mutagene N-nitroso dimethylamine. The manifestation of the effect for both compounds was disclosed through a significant increase in the chromosome aberration frequency in the bone marrow cells of intoxicated rats. The levels of chromosome aberrations induced by 1,1-dimetyl hydrazine were studied following both single (1h) and repeated doses (daily for 10 consecutive days) by inhalation (205-1028mg/m(3)) and gavage (5.4-26.8mg/kg) administration, respectively. For comparison N-nitroso dimethylamine were administered by inhalation (2h/daily for 10 consecutive days) and by gavage in concentrations of 2.4-48mg/m(3) and 1-30mg/kg, respectively. A clear dependence of concentration as well of time was disclosed. The BenchMark Dose approach was employed to derive guideline doses for the two compounds, the implications towards human health being discussed.


Talanta | 2015

Determination of 1-methyl-1H-1,2,4-triazole in soils contaminated by rocket fuel using solid-phase microextraction, isotope dilution and gas chromatography–mass spectrometry

Saltanat Yegemova; Nadezhda V. Bakaikina; Bulat Kenessov; Jacek A. Koziel; Mikhail Nauryzbayev

Environmental monitoring of Central Kazakhstan territories where heavy space booster rockets land requires fast, efficient, and inexpensive analytical methods. The goal of this study was to develop a method for quantitation of the most stable transformation product of rocket fuel, i.e., highly toxic unsymmetrical dimethylhydrazine - 1-methyl-1H-1,2,4-triazole (MTA) in soils using solid-phase microextraction (SPME) in combination with gas chromatography-mass spectrometry. Quantitation of organic compounds in soil samples by SPME is complicated by a matrix effect. Thus, an isotope dilution method was chosen using deuterated analyte (1-(trideuteromethyl)-1H-1,2,4-triazole; MTA-d3) for matrix effect control. The work included study of the matrix effect, optimization of a sample equilibration stage (time and temperature) after spiking MTA-d3 and validation of the developed method. Soils of different type and water content showed an order of magnitude difference in SPME effectiveness of the analyte. Isotope dilution minimized matrix effects. However, proper equilibration of MTA-d3 in soil was required. Complete MTA-d3 equilibration at temperatures below 40°C was not observed. Increase of temperature to 60°C and 80°C enhanced equilibration reaching theoretical MTA/MTA-d3 response ratios after 13 and 3h, respectively. Recoveries of MTA depended on concentrations of spiked MTA-d3 during method validation. Lowest spiked MTA-d3 concentration (0.24 mg kg(-1)) provided best MTA recoveries (91-121%). Addition of excess water to soil sample prior to SPME increased equilibration rate, but it also decreased method sensitivity. Method detection limit depended on soil type, water content, and was always below 1 mg kg(-1). The newly developed method is fully automated, and requires much lower time, labor and financial resources compared to known methods.


Analytica Chimica Acta | 2015

Quantification of benzene, toluene, ethylbenzene and o-xylene in internal combustion engine exhaust with time-weighted average solid phase microextraction and gas chromatography mass spectrometry.

Nassiba Baimatova; Jacek A. Koziel; Bulat Kenessov

A new and simple method for benzene, toluene, ethylbenzene and o-xylene (BTEX) quantification in vehicle exhaust was developed based on diffusion-controlled extraction onto a retracted solid-phase microextraction (SPME) fiber coating. The rationale was to develop a method based on existing and proven SPME technology that is feasible for field adaptation in developing countries. Passive sampling with SPME fiber retracted into the needle extracted nearly two orders of magnitude less mass (n) compared with exposed fiber (outside of needle) and sampling was in a time weighted-averaging (TWA) mode. Both the sampling time (t) and fiber retraction depth (Z) were adjusted to quantify a wider range of Cgas. Extraction and quantification is conducted in a non-equilibrium mode. Effects of Cgas, t, Z and T were tested. In addition, contribution of n extracted by metallic surfaces of needle assembly without SPME coating was studied. Effects of sample storage time on n loss was studied. Retracted TWA-SPME extractions followed the theoretical model. Extracted n of BTEX was proportional to Cgas, t, Dg, T and inversely proportional to Z. Method detection limits were 1.8, 2.7, 2.1 and 5.2 mg m(-3) (0.51, 0.83, 0.66 and 1.62 ppm) for BTEX, respectively. The contribution of extraction onto metallic surfaces was reproducible and influenced by Cgas and t and less so by T and by the Z. The new method was applied to measure BTEX in the exhaust gas of a Ford Crown Victoria 1995 and compared with a whole gas and direct injection method.


Food Chemistry | 2017

Determination of semi-volatile additives in wines using SPME and GC–MS

Gulyaim N. Sagandykova; Mereke Alimzhanova; Yenglik T. Nurzhanova; Bulat Kenessov

Parameters of headspace solid-phase microextraction, such as fiber coating (85μm CAR/PDMS), extraction time (2min for white and 3min for red wines), temperature (85°C), pre-incubation time (15min) were optimized for identification and quantification of semi-volatile additives (propylene glycol, sorbic and benzoic acids) in wines. To overcome problems in their determination, an evaporation of the wine matrix was performed. Using the optimized method, screening of 25 wine samples was performed, and the presence of propylene glycol, sorbic and benzoic acids was found in 22, 20 and 6 samples, respectively. Analysis of different wines using a standard addition approach showed good linearity in concentration ranges 0-250, 0-125, and 0-250mg/L for propylene glycol, sorbic and benzoic acids, respectively. The proposed method can be recommended for quality control of wine and disclosing adulterated samples.


Science of The Total Environment | 2018

Use of partial order in environmental pollution studies demonstrated by urban BTEX air pollution in 20 major cities worldwide

Lars Carlsen; Rainer Brüggemann; Bulat Kenessov

Urban air pollution with benzene, toluene, ethyl benzene and xylenes (BTEX) is a common phenomenon in major cities where the pollution mainly originates from traffic as well as from residential heating. An attempt to rank cities according to their BTEX air pollution is not necessarily straight forward as we are faced with several individual pollutants simultaneously. A typical procedure is based on aggregation of data for the single compounds, a process that not only hides important information but is also subject to compensation effects. The present study applies a series of partial ordering tools to circumvent the aggregation. Based on partial ordering, most important indicators are disclosed, and an average ranking of the cities included in the study is derived. Since air pollution measurements are often subject to significant uncertainties, special attention has been given to the possible effect of uncertainty and/or data noise. Finally, the effect of introducing weight regimes is studied. In a concluding section the gross national income per person (GNI) is brought into play, demonstrating a positive correlation between BTEX air pollution and GNI. The results are discussed in terms of the ability/willingness to combat air pollution in the cities studied. The present study focuses on Almaty, the largest city in Kazakhstan and compares the data from Almaty to another 19 major cities around the world. It is found that the benzene for Almaty appears peculiar high. Overall Almaty appears ranked as the 8th most BTEX polluted city among the 20 cities included in the study.


Talanta | 2018

Quantification of transformation products of rocket fuel unsymmetrical dimethylhydrazine in soils using SPME and GC-MS

Nadezhda V. Bakaikina; Bulat Kenessov; Nikolay V. Ul’yanovskii; D. S. Kosyakov

Determination of transformation products (TPs) of rocket fuel unsymmetrical dimethylhydrazine (UDMH) in soil is highly important for environmental impact assessment of the launches of heavy space rockets from Kazakhstan, Russia, China and India. The method based on headspace solid-phase microextraction (HS SPME) and gas chromatography-mass spectrometry is advantageous over other known methods due to greater simplicity and cost efficiency. However, accurate quantification of these analytes using HS SPME is limited by the matrix effect. In this research, we proposed using internal standard and standard addition calibrations to achieve proper combination of accuracies of the quantification of key TPs of UDMH and cost efficiency. 1-Trideuteromethyl-1H-1,2,4-triazole (MTA-d3) was used as the internal standard. Internal standard calibration allowed controlling matrix effects during quantification of 1-methyl-1H-1,2,4-triazole (MTA), N,N-dimethylformamide (DMF), and N-nitrosodimethylamine (NDMA) in soils with humus content < 1%. Using SPME at 60 °C for 15 min by 65 µm Carboxen/polydimethylsiloxane fiber, recoveries of MTA, DMF and NDMA for sandy and loamy soil samples were 91-117, 85-123 and 64-132%, respectively. For improving the method accuracy and widening the range of analytes, standard addition and its combination with internal standard calibration were tested and compared on real soil samples. The combined calibration approach provided greatest accuracies for NDMA, DMF, N-methylformamide, formamide, 1H-pyrazole, 3-methyl-1H-pyrazole and 1H-pyrazole. For determination of 1-formyl-2,2-dimethylhydrazine, 3,5-dimethylpyrazole, 2-ethyl-1H-imidazole, 1H-imidazole, 1H-1,2,4-triazole, pyrazines and pyridines, standard addition calibration is more suitable. However, the proposed approach and collected data allow using both approaches simultaneously.

Collaboration


Dive into the Bulat Kenessov's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge