Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Bülent Arman Aksoy is active.

Publication


Featured researches published by Bülent Arman Aksoy.


Cancer Discovery | 2012

The cBio Cancer Genomics Portal: An Open Platform for Exploring Multidimensional Cancer Genomics Data

Ethan Cerami; Jianjiong Gao; Ugur Dogrusoz; Benjamin E. Gross; Selcuk Onur Sumer; Bülent Arman Aksoy; Anders Jacobsen; Caitlin J. Byrne; Michael L. Heuer; Erik G. Larsson; Yevgeniy Antipin; Boris Reva; Arthur P. Goldberg; Chris Sander; Nikolaus Schultz

The cBio Cancer Genomics Portal (http://cbioportal.org) is an open-access resource for interactive exploration of multidimensional cancer genomics data sets, currently providing access to data from more than 5,000 tumor samples from 20 cancer studies. The cBio Cancer Genomics Portal significantly lowers the barriers between complex genomic data and cancer researchers who want rapid, intuitive, and high-quality access to molecular profiles and clinical attributes from large-scale cancer genomics projects and empowers researchers to translate these rich data sets into biologic insights and clinical applications.


Science Signaling | 2013

Integrative analysis of complex cancer genomics and clinical profiles using the cBioPortal.

Jian Jiong Gao; Bülent Arman Aksoy; Ugur Dogrusoz; Gideon Dresdner; Benjamin E. Gross; Selcuk Onur Sumer; Yichao Sun; Anders Jacobsen; Rileen Sinha; Erik Larsson; Ethan Cerami; Chris Sander; Nikolaus Schultz

The cBioPortal enables integration, visualization, and analysis of multidimensional cancer genomic and clinical data. The cBioPortal for Cancer Genomics (http://cbioportal.org) provides a Web resource for exploring, visualizing, and analyzing multidimensional cancer genomics data. The portal reduces molecular profiling data from cancer tissues and cell lines into readily understandable genetic, epigenetic, gene expression, and proteomic events. The query interface combined with customized data storage enables researchers to interactively explore genetic alterations across samples, genes, and pathways and, when available in the underlying data, to link these to clinical outcomes. The portal provides graphical summaries of gene-level data from multiple platforms, network visualization and analysis, survival analysis, patient-centric queries, and software programmatic access. The intuitive Web interface of the portal makes complex cancer genomics profiles accessible to researchers and clinicians without requiring bioinformatics expertise, thus facilitating biological discoveries. Here, we provide a practical guide to the analysis and visualization features of the cBioPortal for Cancer Genomics.


Nature Genetics | 2013

Emerging landscape of oncogenic signatures across human cancers

Giovanni Ciriello; Martin L. Miller; Bülent Arman Aksoy; Yasin Senbabaoglu; Nikolaus Schultz; Chris Sander

Cancer therapy is challenged by the diversity of molecular implementations of oncogenic processes and by the resulting variation in therapeutic responses. Projects such as The Cancer Genome Atlas (TCGA) provide molecular tumor maps in unprecedented detail. The interpretation of these maps remains a major challenge. Here we distilled thousands of genetic and epigenetic features altered in cancers to ∼500 selected functional events (SFEs). Using this simplified description, we derived a hierarchical classification of 3,299 TCGA tumors from 12 cancer types. The top classes are dominated by either mutations (M class) or copy number changes (C class). This distinction is clearest at the extremes of genomic instability, indicating the presence of different oncogenic processes. The full hierarchy shows functional event patterns characteristic of multiple cross-tissue groups of tumors, termed oncogenic signature classes. Targetable functional events in a tumor class are suggestive of class-specific combination therapy. These results may assist in the definition of clinical trials to match actionable oncogenic signatures with personalized therapies.


Genome Biology | 2015

Systematic identification of cancer driving signaling pathways based on mutual exclusivity of genomic alterations

Özgün Babur; Mithat Gonen; Bülent Arman Aksoy; Nikolaus Schultz; Giovanni Ciriello; Chris Sander; Emek Demir

We present a novel method for the identification of sets of mutually exclusive gene alterations in a given set of genomic profiles. We scan the groups of genes with a common downstream effect on the signaling network, using a mutual exclusivity criterion that ensures that each gene in the group significantly contributes to the mutual exclusivity pattern. We test the method on all available TCGA cancer genomics datasets, and detect multiple previously unreported alterations that show significant mutual exclusivity and are likely to be driver events.


Nature Genetics | 2013

Genome-wide inference of natural selection on human transcription factor binding sites

Leonardo Arbiza; Ilan Gronau; Bülent Arman Aksoy; Melissa J. Hubisz; Brad Gulko; Alon Keinan; Adam Siepel

For decades, it has been hypothesized that gene regulation has had a central role in human evolution, yet much remains unknown about the genome-wide impact of regulatory mutations. Here we use whole-genome sequences and genome-wide chromatin immunoprecipitation and sequencing data to demonstrate that natural selection has profoundly influenced human transcription factor binding sites since the divergence of humans from chimpanzees 4–6 million years ago. Our analysis uses a new probabilistic method, called INSIGHT, for measuring the influence of selection on collections of short, interspersed noncoding elements. We find that, on average, transcription factor binding sites have experienced somewhat weaker selection than protein-coding genes. However, the binding sites of several transcription factors show clear evidence of adaptation. Several measures of selection are strongly correlated with predicted binding affinity. Overall, regulatory elements seem to contribute substantially to both adaptive substitutions and deleterious polymorphisms with key implications for human evolution and disease.


PLOS Computational Biology | 2013

Using biological pathway data with paxtools.

Emek Demir; Özgün Babur; Igor Rodchenkov; Bülent Arman Aksoy; Ken Fukuda; Benjamin E. Gross; Onur Sumer; Gary D. Bader; Chris Sander

A rapidly growing corpus of formal, computable pathway information can be used to answer important biological questions including finding non-trivial connections between cellular processes, identifying significantly altered portions of the cellular network in a disease state and building predictive models that can be used for precision medicine. Due to its complexity and fragmented nature, however, working with pathway data is still difficult. We present Paxtools, a Java library that contains algorithms, software components and converters for biological pathways represented in the standard BioPAX language. Paxtools allows scientists to focus on their scientific problem by removing technical barriers to access and analyse pathway information. Paxtools can run on any platform that has a Java Runtime Environment and was tested on most modern operating systems. Paxtools is open source and is available under the Lesser GNU public license (LGPL), which allows users to freely use the code in their software systems with a requirement for attribution. Source code for the current release (4.2.0) can be found in Software S1. A detailed manual for obtaining and using Paxtools can be found in Protocol S1. The latest sources and release bundles can be obtained from biopax.org/paxtools.


Cell systems | 2015

Pan-Cancer Analysis of Mutation Hotspots in Protein Domains

Martin L. Miller; Ed Reznik; Nicholas Paul Gauthier; Bülent Arman Aksoy; Anil Korkut; Jianjiong Gao; Giovanni Ciriello; Nikolaus Schultz; Chris Sander

In cancer genomics, recurrence of mutations in independent tumor samples is a strong indicator of functional impact. However, rare functional mutations can escape detection by recurrence analysis owing to lack of statistical power. We enhance statistical power by extending the notion of recurrence of mutations from single genes to gene families that share homologous protein domains. Domain mutation analysis also sharpens the functional interpretation of the impact of mutations, as domains more succinctly embody function than entire genes. By mapping mutations in 22 different tumor types to equivalent positions in multiple sequence alignments of domains, we confirm well-known functional mutation hotspots, identify uncharacterized rare variants in one gene that are equivalent to well-characterized mutations in another gene, detect previously unknown mutation hotspots, and provide hypotheses about molecular mechanisms and downstream effects of domain mutations. With the rapid expansion of cancer genomics projects, protein domain hotspot analysis will likely provide many more leads linking mutations in proteins to the cancer phenotype.


PLOS Medicine | 2017

Contribution of systemic and somatic factors to clinical response and resistance to PD-L1 blockade in urothelial cancer: An exploratory multi-omic analysis

Alexandra Snyder; Tavi Nathanson; Samuel Funt; Arun Ahuja; Jacqueline Buros Novik; Matthew D. Hellmann; Eliza Chang; Bülent Arman Aksoy; Hikmat Al-Ahmadie; Erik Yusko; Marissa Vignali; Sharon Benzeno; Mariel Elena Boyd; Meredith Maisie Moran; Gopa Iyer; Harlan Robins; Elaine R. Mardis; Taha Merghoub; Jeff Hammerbacher; Jonathan E. Rosenberg; Dean F. Bajorin

Background Inhibition of programmed death-ligand 1 (PD-L1) with atezolizumab can induce durable clinical benefit (DCB) in patients with metastatic urothelial cancers, including complete remissions in patients with chemotherapy refractory disease. Although mutation load and PD-L1 immune cell (IC) staining have been associated with response, they lack sufficient sensitivity and specificity for clinical use. Thus, there is a need to evaluate the peripheral blood immune environment and to conduct detailed analyses of mutation load, predicted neoantigens, and immune cellular infiltration in tumors to enhance our understanding of the biologic underpinnings of response and resistance. Methods and findings The goals of this study were to (1) evaluate the association of mutation load and predicted neoantigen load with therapeutic benefit and (2) determine whether intratumoral and peripheral blood T cell receptor (TCR) clonality inform clinical outcomes in urothelial carcinoma treated with atezolizumab. We hypothesized that an elevated mutation load in combination with T cell clonal dominance among intratumoral lymphocytes prior to treatment or among peripheral T cells after treatment would be associated with effective tumor control upon treatment with anti-PD-L1 therapy. We performed whole exome sequencing (WES), RNA sequencing (RNA-seq), and T cell receptor sequencing (TCR-seq) of pretreatment tumor samples as well as TCR-seq of matched, serially collected peripheral blood, collected before and after treatment with atezolizumab. These parameters were assessed for correlation with DCB (defined as progression-free survival [PFS] >6 months), PFS, and overall survival (OS), both alone and in the context of clinical and intratumoral parameters known to be predictive of survival in this disease state. Patients with DCB displayed a higher proportion of tumor-infiltrating T lymphocytes (TIL) (n = 24, Mann-Whitney p = 0.047). Pretreatment peripheral blood TCR clonality below the median was associated with improved PFS (n = 29, log-rank p = 0.048) and OS (n = 29, log-rank p = 0.011). Patients with DCB also demonstrated more substantial expansion of tumor-associated TCR clones in the peripheral blood 3 weeks after starting treatment (n = 22, Mann-Whitney p = 0.022). The combination of high pretreatment peripheral blood TCR clonality with elevated PD-L1 IC staining in tumor tissue was strongly associated with poor clinical outcomes (n = 10, hazard ratio (HR) (mean) = 89.88, HR (median) = 23.41, 95% CI [2.43, 506.94], p(HR > 1) = 0.0014). Marked variations in mutation loads were seen with different somatic variant calling methodologies, which, in turn, impacted associations with clinical outcomes. Missense mutation load, predicted neoantigen load, and expressed neoantigen load did not demonstrate significant association with DCB (n = 25, Mann-Whitney p = 0.22, n = 25, Mann-Whitney p = 0.55, and n = 25, Mann-Whitney p = 0.29, respectively). Instead, we found evidence of time-varying effects of somatic mutation load on PFS in this cohort (n = 25, p = 0.044). A limitation of our study is its small sample size (n = 29), a subset of the patients treated on IMvigor 210 (NCT02108652). Given the number of exploratory analyses performed, we intend for these results to be hypothesis-generating. Conclusions These results demonstrate the complex nature of immune response to checkpoint blockade and the compelling need for greater interrogation and data integration of both host and tumor factors. Incorporating these variables in prospective studies will facilitate identification and treatment of resistant patients.


eLife | 2015

Perturbation biology nominates upstream–downstream drug combinations in RAF inhibitor resistant melanoma cells

Anil Korkut; Weiqing Wang; Emek Demir; Bülent Arman Aksoy; Xiaohong Jing; Evan Molinelli; Özgün Babur; Debra Bemis; Selcuk Onur Sumer; David B. Solit; Christine A. Pratilas; Chris Sander

Resistance to targeted cancer therapies is an important clinical problem. The discovery of anti-resistance drug combinations is challenging as resistance can arise by diverse escape mechanisms. To address this challenge, we improved and applied the experimental-computational perturbation biology method. Using statistical inference, we build network models from high-throughput measurements of molecular and phenotypic responses to combinatorial targeted perturbations. The models are computationally executed to predict the effects of thousands of untested perturbations. In RAF-inhibitor resistant melanoma cells, we measured 143 proteomic/phenotypic entities under 89 perturbation conditions and predicted c-Myc as an effective therapeutic co-target with BRAF or MEK. Experiments using the BET bromodomain inhibitor JQ1 affecting the level of c-Myc protein and protein kinase inhibitors targeting the ERK pathway confirmed the prediction. In conclusion, we propose an anti-cancer strategy of co-targeting a specific upstream alteration and a general downstream point of vulnerability to prevent or overcome resistance to targeted drugs. DOI: http://dx.doi.org/10.7554/eLife.04640.001


Cancer immunology research | 2017

Somatic Mutations and Neoepitope Homology in Melanomas Treated with CTLA-4 Blockade

Tavi Nathanson; Arun Ahuja; Alexander Rubinsteyn; Bülent Arman Aksoy; Matthew D. Hellmann; Diana Miao; Eliezer M. Van Allen; Taha Merghoub; Jedd D. Wolchok; Alexandra Snyder; Jeff Hammerbacher

This is a reanalysis of data described in Snyder et al., N Eng J Med 2014;371:2189–99, that also provides an open-source tool for comparing epitopes. No predictor of response to anti–CTLA-4 therapy was more accurate than mutation burden. Immune checkpoint inhibitors are promising treatments for patients with a variety of malignancies. Toward understanding the determinants of response to immune checkpoint inhibitors, it was previously demonstrated that the presence of somatic mutations is associated with benefit from checkpoint inhibition. A hypothesis was posited that neoantigen homology to pathogens may in part explain the link between somatic mutations and response. To further examine this hypothesis, we reanalyzed cancer exome data obtained from our previously published study of 64 melanoma patients treated with CTLA-4 blockade and a new dataset of RNA-Seq data from 24 of these patients. We found that the ability to accurately predict patient benefit did not increase as the analysis narrowed from somatic mutation burden, to inclusion of only those mutations predicted to be MHC class I neoantigens, to only including those neoantigens that were expressed or that had homology to pathogens. The only association between somatic mutation burden and response was found when examining samples obtained prior to treatment. Neoantigen and expressed neoantigen burden were also associated with response, but neither was more predictive than somatic mutation burden. Neither the previously described tetrapeptide signature nor an updated method to evaluate neoepitope homology to pathogens was more predictive than mutation burden. Cancer Immunol Res; 5(1); 84–91. ©2016 AACR.

Collaboration


Dive into the Bülent Arman Aksoy's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Nikolaus Schultz

Memorial Sloan Kettering Cancer Center

View shared research outputs
Top Co-Authors

Avatar

Emek Demir

Memorial Sloan Kettering Cancer Center

View shared research outputs
Top Co-Authors

Avatar

Özgün Babur

Memorial Sloan Kettering Cancer Center

View shared research outputs
Top Co-Authors

Avatar

Giovanni Ciriello

Memorial Sloan Kettering Cancer Center

View shared research outputs
Top Co-Authors

Avatar

Selcuk Onur Sumer

Memorial Sloan Kettering Cancer Center

View shared research outputs
Top Co-Authors

Avatar

Anil Korkut

Memorial Sloan Kettering Cancer Center

View shared research outputs
Top Co-Authors

Avatar

Benjamin E. Gross

Memorial Sloan Kettering Cancer Center

View shared research outputs
Top Co-Authors

Avatar

Ethan Cerami

Memorial Sloan Kettering Cancer Center

View shared research outputs
Top Co-Authors

Avatar

Jeff Hammerbacher

Icahn School of Medicine at Mount Sinai

View shared research outputs
Researchain Logo
Decentralizing Knowledge