Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Benjamin E. Gross is active.

Publication


Featured researches published by Benjamin E. Gross.


Cancer Discovery | 2012

The cBio Cancer Genomics Portal: An Open Platform for Exploring Multidimensional Cancer Genomics Data

Ethan Cerami; Jianjiong Gao; Ugur Dogrusoz; Benjamin E. Gross; Selcuk Onur Sumer; Bülent Arman Aksoy; Anders Jacobsen; Caitlin J. Byrne; Michael L. Heuer; Erik G. Larsson; Yevgeniy Antipin; Boris Reva; Arthur P. Goldberg; Chris Sander; Nikolaus Schultz

The cBio Cancer Genomics Portal (http://cbioportal.org) is an open-access resource for interactive exploration of multidimensional cancer genomics data sets, currently providing access to data from more than 5,000 tumor samples from 20 cancer studies. The cBio Cancer Genomics Portal significantly lowers the barriers between complex genomic data and cancer researchers who want rapid, intuitive, and high-quality access to molecular profiles and clinical attributes from large-scale cancer genomics projects and empowers researchers to translate these rich data sets into biologic insights and clinical applications.


Science Signaling | 2013

Integrative analysis of complex cancer genomics and clinical profiles using the cBioPortal.

Jian Jiong Gao; Bülent Arman Aksoy; Ugur Dogrusoz; Gideon Dresdner; Benjamin E. Gross; Selcuk Onur Sumer; Yichao Sun; Anders Jacobsen; Rileen Sinha; Erik Larsson; Ethan Cerami; Chris Sander; Nikolaus Schultz

The cBioPortal enables integration, visualization, and analysis of multidimensional cancer genomic and clinical data. The cBioPortal for Cancer Genomics (http://cbioportal.org) provides a Web resource for exploring, visualizing, and analyzing multidimensional cancer genomics data. The portal reduces molecular profiling data from cancer tissues and cell lines into readily understandable genetic, epigenetic, gene expression, and proteomic events. The query interface combined with customized data storage enables researchers to interactively explore genetic alterations across samples, genes, and pathways and, when available in the underlying data, to link these to clinical outcomes. The portal provides graphical summaries of gene-level data from multiple platforms, network visualization and analysis, survival analysis, patient-centric queries, and software programmatic access. The intuitive Web interface of the portal makes complex cancer genomics profiles accessible to researchers and clinicians without requiring bioinformatics expertise, thus facilitating biological discoveries. Here, we provide a practical guide to the analysis and visualization features of the cBioPortal for Cancer Genomics.


Nature Protocols | 2007

Integration of biological networks and gene expression data using Cytoscape

Melissa S Cline; Michael Smoot; Ethan Cerami; Allan Kuchinsky; Nerius Landys; Christopher T. Workman; Rowan H. Christmas; Iliana Avila-Campilo; Michael L. Creech; Benjamin E. Gross; Kristina Hanspers; Ruth Isserlin; R. Kelley; Sarah Killcoyne; Samad Lotia; Steven Maere; John H. Morris; Keiichiro Ono; Vuk Pavlovic; Alexander R. Pico; Aditya Vailaya; Peng-Liang Wang; Annette Adler; Bruce R. Conklin; Leroy Hood; Martin Kuiper; Chris Sander; Ilya Schmulevich; Benno Schwikowski; Guy Warner

Cytoscape is a free software package for visualizing, modeling and analyzing molecular and genetic interaction networks. This protocol explains how to use Cytoscape to analyze the results of mRNA expression profiling, and other functional genomics and proteomics experiments, in the context of an interaction network obtained for genes of interest. Five major steps are described: (i) obtaining a gene or protein network, (ii) displaying the network using layout algorithms, (iii) integrating with gene expression and other functional attributes, (iv) identifying putative complexes and functional modules and (v) identifying enriched Gene Ontology annotations in the network. These steps provide a broad sample of the types of analyses performed by Cytoscape.


Nature Medicine | 2017

Mutational landscape of metastatic cancer revealed from prospective clinical sequencing of 10,000 patients

Ahmet Zehir; Ryma Benayed; Ronak Shah; Aijazuddin Syed; Sumit Middha; Hyunjae R. Kim; Preethi Srinivasan; Jianjiong Gao; Debyani Chakravarty; Sean M. Devlin; Matthew D. Hellmann; David Barron; Alison M. Schram; Meera Hameed; Snjezana Dogan; Dara S. Ross; Jaclyn F. Hechtman; Deborah DeLair; Jinjuan Yao; Diana Mandelker; Donavan T. Cheng; Raghu Chandramohan; Abhinita Mohanty; Ryan Ptashkin; Gowtham Jayakumaran; Meera Prasad; Mustafa H Syed; Anoop Balakrishnan Rema; Zhen Y Liu; Khedoudja Nafa

Tumor molecular profiling is a fundamental component of precision oncology, enabling the identification of genomic alterations in genes and pathways that can be targeted therapeutically. The existence of recurrent targetable alterations across distinct histologically defined tumor types, coupled with an expanding portfolio of molecularly targeted therapies, demands flexible and comprehensive approaches to profile clinically relevant genes across the full spectrum of cancers. We established a large-scale, prospective clinical sequencing initiative using a comprehensive assay, MSK-IMPACT, through which we have compiled tumor and matched normal sequence data from a unique cohort of more than 10,000 patients with advanced cancer and available pathological and clinical annotations. Using these data, we identified clinically relevant somatic mutations, novel noncoding alterations, and mutational signatures that were shared by common and rare tumor types. Patients were enrolled on genomically matched clinical trials at a rate of 11%. To enable discovery of novel biomarkers and deeper investigation into rare alterations and tumor types, all results are publicly accessible.


Nature Genetics | 2013

The mutational landscape of adenoid cystic carcinoma

Allen S. Ho; Kasthuri Kannan; David M Roy; Luc G. T. Morris; Ian Ganly; Nora Katabi; Deepa Ramaswami; Logan A. Walsh; Stephanie Eng; Jason T. Huse; Jianan Zhang; Igor Dolgalev; Kety Huberman; Adriana Heguy; Agnes Viale; Marija Drobnjak; Margaret Leversha; Christine E Rice; Bhuvanesh Singh; N. Gopalakrishna Iyer; C. René Leemans; Elisabeth Bloemena; Robert L. Ferris; Raja R. Seethala; Benjamin E. Gross; Yupu Liang; Rileen Sinha; Luke Peng; Benjamin J. Raphael; Sevin Turcan

Adenoid cystic carcinomas (ACCs) are among the most enigmatic of human malignancies. These aggressive salivary gland cancers frequently recur and metastasize despite definitive treatment, with no known effective chemotherapy regimen. Here we determined the ACC mutational landscape and report the exome or whole-genome sequences of 60 ACC tumor-normal pairs. These analyses identified a low exonic somatic mutation rate (0.31 non-silent events per megabase) and wide mutational diversity. Notably, we found mutations in genes encoding chromatin-state regulators, such as SMARCA2, CREBBP and KDM6A, suggesting that there is aberrant epigenetic regulation in ACC oncogenesis. Mutations in genes central to the DNA damage response and protein kinase A signaling also implicate these processes. We observed MYB-NFIB translocations and somatic mutations in MYB-associated genes, solidifying the role of these aberrations as critical events in ACC. Lastly, we identified recurrent mutations in the FGF-IGF-PI3K pathway (30% of tumors) that might represent new avenues for therapy. Collectively, our observations establish a molecular foundation for understanding and exploring new treatments for ACC.


BMC Bioinformatics | 2006

cPath: open source software for collecting, storing, and querying biological pathways

Ethan Cerami; Gary D. Bader; Benjamin E. Gross; Chris Sander

BackgroundBiological pathways, including metabolic pathways, protein interaction networks, signal transduction pathways, and gene regulatory networks, are currently represented in over 220 diverse databases. These data are crucial for the study of specific biological processes, including human diseases. Standard exchange formats for pathway information, such as BioPAX, CellML, SBML and PSI-MI, enable convenient collection of this data for biological research, but mechanisms for common storage and communication are required.ResultsWe have developed cPath, an open source database and web application for collecting, storing, and querying biological pathway data. cPath makes it easy to aggregate custom pathway data sets available in standard exchange formats from multiple databases, present pathway data to biologists via a customizable web interface, and export pathway data via a web service to third-party software, such as Cytoscape, for visualization and analysis. cPath is software only, and does not include new pathway information. Key features include: a built-in identifier mapping service for linking identical interactors and linking to external resources; built-in support for PSI-MI and BioPAX standard pathway exchange formats; a web service interface for searching and retrieving pathway data sets; and thorough documentation. The cPath software is freely available under the LGPL open source license for academic and commercial use.ConclusioncPath is a robust, scalable, modular, professional-grade software platform for collecting, storing, and querying biological pathways. It can serve as the core data handling component in information systems for pathway visualization, analysis and modeling.


PLOS Computational Biology | 2013

Using biological pathway data with paxtools.

Emek Demir; Özgün Babur; Igor Rodchenkov; Bülent Arman Aksoy; Ken Fukuda; Benjamin E. Gross; Onur Sumer; Gary D. Bader; Chris Sander

A rapidly growing corpus of formal, computable pathway information can be used to answer important biological questions including finding non-trivial connections between cellular processes, identifying significantly altered portions of the cellular network in a disease state and building predictive models that can be used for precision medicine. Due to its complexity and fragmented nature, however, working with pathway data is still difficult. We present Paxtools, a Java library that contains algorithms, software components and converters for biological pathways represented in the standard BioPAX language. Paxtools allows scientists to focus on their scientific problem by removing technical barriers to access and analyse pathway information. Paxtools can run on any platform that has a Java Runtime Environment and was tested on most modern operating systems. Paxtools is open source and is available under the Lesser GNU public license (LGPL), which allows users to freely use the code in their software systems with a requirement for attribution. Source code for the current release (4.2.0) can be found in Software S1. A detailed manual for obtaining and using Paxtools can be found in Protocol S1. The latest sources and release bundles can be obtained from biopax.org/paxtools.


Cancer Discovery | 2018

Genetic Predictors of Response to Systemic Therapy in Esophagogastric Cancer

Yelena Y. Janjigian; Francisco Sanchez-Vega; Philip Jonsson; Walid K. Chatila; Jaclyn F. Hechtman; Geoffrey Y. Ku; Jamie Riches; Yaelle Tuvy; Ritika Kundra; Nancy Bouvier; Efsevia Vakiani; Jianjiong Gao; Zachary J. Heins; Benjamin E. Gross; David P. Kelsen; Liying Zhang; Vivian E. Strong; Mark A. Schattner; Hans Gerdes; Daniel G. Coit; Manjit S. Bains; Zsofia K. Stadler; Valerie W. Rusch; David R. Jones; Daniela Molena; Jinru Shia; Mark E. Robson; Marinela Capanu; Sumit Middha; Ahmet Zehir

The incidence of esophagogastric cancer is rapidly rising, but only a minority of patients derive durable benefit from current therapies. Chemotherapy as well as anti-HER2 and PD-1 antibodies are standard treatments. To identify predictive biomarkers of drug sensitivity and mechanisms of resistance, we implemented prospective tumor sequencing of patients with metastatic esophagogastric cancer. There was no association between homologous recombination deficiency defects and response to platinum-based chemotherapy. Patients with microsatellite instability-high tumors were intrinsically resistant to chemotherapy but more likely to achieve durable responses to immunotherapy. The single Epstein-Barr virus-positive patient achieved a durable, complete response to immunotherapy. The level of ERBB2 amplification as determined by sequencing was predictive of trastuzumab benefit. Selection for a tumor subclone lacking ERBB2 amplification, deletion of ERBB2 exon 16, and comutations in the receptor tyrosine kinase, RAS, and PI3K pathways were associated with intrinsic and/or acquired trastuzumab resistance. Prospective genomic profiling can identify patients most likely to derive durable benefit to immunotherapy and trastuzumab and guide strategies to overcome drug resistance.Significance: Clinical application of multiplex sequencing can identify biomarkers of treatment response to contemporary systemic therapies in metastatic esophagogastric cancer. This large prospective analysis sheds light on the biological complexity and the dynamic nature of therapeutic resistance in metastatic esophagogastric cancers. Cancer Discov; 8(1); 49-58. ©2017 AACR.See related commentary by Sundar and Tan, p. 14See related article by Pectasides et al., p. 37This article is highlighted in the In This Issue feature, p. 1.


Cancer Research | 2016

Abstract 5277: The cBioPortal for cancer genomics and its application in precision oncology

Jianjiong Gao; James Lindsay; Stuart Watt; Istemi Bahceci; Pieter Lukasse; Adam Abeshouse; Hsiao-Wei Chen; Ino de Bruijn; Benjamin E. Gross; Dong Li; Ritika Kundra; Zachary J. Heins; Jorge S. Reis-Filho; Onur Sumer; Yichao Sun; Jiaojiao Wang; Qingguo Wang; Hongxin Zhang; Priti Kumari; M. Furkan Sahin; Sander de Ridder; Fedde Schaeffer; Kees van Bochove; Ugur Dogrusoz; Trevor J. Pugh; Chris Sander; Ethan Cerami; Nikolaus Schultz

The cBioPortal for Cancer Genomics provides intuitive visualization and analysis of complex cancer genomics data. The public site (http://cbioportal.org/) is accessed by more than 1,500 researchers per day, and there are now dozens of local instances of the software that host private data sets at cancer centers around the globe. We have recently released the software under an open source license, making it free to use and modify by anybody. The software and detailed documentation are available at https://github.com/cBioPortal/cbioportal. We are now establishing a multi-institutional software development network, which will coordinate and drive the future development of the software and associated data pipelines. This group will focus on four main areas: 1. New analysis and visualization features, including: a. Improved support for cross-cancer queries and cohort comparisons. b. Enhanced clinical decision support for precision oncology, including an improved patient view with knowledge base integration, patient timelines and improved tools for visualizing tumor evolution. 2. New data pipelines, including support for new genomic data types and streamlined pipelines for TCGA and the International Cancer Genome Consortium (ICGC). 3. Software architecture and performance improvements. 4. Community engagement: Documentation, user support, and training. This coordinated effort will help to further establish the cBioPortal as the software of choice in cancer genomics research, both in academia and the pharmaceutical industry. Furthermore, as the sequencing of tumor samples has entered clinical practice, we are expanding the features of the software so that it can be used for precision medicine at cancer centers. In particular, clean, web-accessible, interactive clinical reports integrating multiple sources of genome variation and clinical annotation over time has potential to improve clinical action beyond current text-based molecular reports. By making complex genomic data easily interpretable and linking it to information about drugs and clinical trials, the cBioPortal software has the potential to facilitate the use of genomic data in clinical decision making. Citation Format: Jianjiong Gao, James Lindsay, Stuart Watt, Istemi Bahceci, Pieter Lukasse, Adam Abeshouse, Hsiao-Wei Chen, Ino de Bruijn, Benjamin Gross, Dong Li, Ritika Kundra, Zachary Heins, Jorge Reis-Filho, Onur Sumer, Yichao Sun, Jiaojiao Wang, Qingguo Wang, Hongxin Zhang, Priti Kumari, M. Furkan Sahin, Sander de Ridder, Fedde Schaeffer, Kees van Bochove, Ugur Dogrusoz, Trevor Pugh, Chris Sander, Ethan Cerami, Nikolaus Schultz. The cBioPortal for cancer genomics and its application in precision oncology. [abstract]. In: Proceedings of the 107th Annual Meeting of the American Association for Cancer Research; 2016 Apr 16-20; New Orleans, LA. Philadelphia (PA): AACR; Cancer Res 2016;76(14 Suppl):Abstract nr 5277.


Scientific Data | 2018

Unifying cancer and normal RNA sequencing data from different sources.

Qingguo Wang; Joshua Armenia; Chao Zhang; Alexander Penson; Ed Reznik; Liguo Zhang; Thais Minet; Angelica Ochoa; Benjamin E. Gross; Christine A. Iacobuzio-Donahue; Doron Betel; Barry S. Taylor; Jianjiong Gao; Nikolaus Schultz

Driven by the recent advances of next generation sequencing (NGS) technologies and an urgent need to decode complex human diseases, a multitude of large-scale studies were conducted recently that have resulted in an unprecedented volume of whole transcriptome sequencing (RNA-seq) data, such as the Genotype Tissue Expression project (GTEx) and The Cancer Genome Atlas (TCGA). While these data offer new opportunities to identify the mechanisms underlying disease, the comparison of data from different sources remains challenging, due to differences in sample and data processing. Here, we developed a pipeline that processes and unifies RNA-seq data from different studies, which includes uniform realignment, gene expression quantification, and batch effect removal. We find that uniform alignment and quantification is not sufficient when combining RNA-seq data from different sources and that the removal of other batch effects is essential to facilitate data comparison. We have processed data from GTEx and TCGA and successfully corrected for study-specific biases, enabling comparative analysis between TCGA and GTEx. The normalized datasets are available for download on figshare.

Collaboration


Dive into the Benjamin E. Gross's collaboration.

Top Co-Authors

Avatar

Jianjiong Gao

Memorial Sloan Kettering Cancer Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Nikolaus Schultz

Memorial Sloan Kettering Cancer Center

View shared research outputs
Top Co-Authors

Avatar

Angelica Ochoa

Memorial Sloan Kettering Cancer Center

View shared research outputs
Top Co-Authors

Avatar

Ethan Cerami

Memorial Sloan Kettering Cancer Center

View shared research outputs
Top Co-Authors

Avatar

Ritika Kundra

Memorial Sloan Kettering Cancer Center

View shared research outputs
Top Co-Authors

Avatar

Yichao Sun

Memorial Sloan Kettering Cancer Center

View shared research outputs
Top Co-Authors

Avatar

Bülent Arman Aksoy

Memorial Sloan Kettering Cancer Center

View shared research outputs
Top Co-Authors

Avatar

Hongxin Zhang

Memorial Sloan Kettering Cancer Center

View shared research outputs
Top Co-Authors

Avatar

Zachary J. Heins

Memorial Sloan Kettering Cancer Center

View shared research outputs
Researchain Logo
Decentralizing Knowledge