Burcu Balci-Hayta
Hacettepe University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Burcu Balci-Hayta.
The New England Journal of Medicine | 2011
Yuji Hara; Burcu Balci-Hayta; Takako Yoshida-Moriguchi; Motoi Kanagawa; Daniel Beltrán-Valero de Bernabé; Hulya Gundesli; Tobias Willer; Jakob S. Satz; Robert W. Crawford; Steven J. Burden; Stefan Kunz; Michael B. A. Oldstone; Alessio Accardi; Beril Talim; Francesco Muntoni; Haluk Topaloglu; Pervin Dinçer; Kevin P. Campbell
Dystroglycan, which serves as a major extracellular matrix receptor in muscle and the central nervous system, requires extensive O-glycosylation to function. We identified a dystroglycan missense mutation (Thr192→Met) in a woman with limb-girdle muscular dystrophy and cognitive impairment. A mouse model harboring this mutation recapitulates the immunohistochemical and neuromuscular abnormalities observed in the patient. In vitro and in vivo studies showed that the mutation impairs the receptor function of dystroglycan in skeletal muscle and brain by inhibiting the post-translational modification, mediated by the glycosyltransferase LARGE, of the phosphorylated O-mannosyl glycans on α-dystroglycan that is required for high-affinity binding to laminin.
American Journal of Human Genetics | 2010
Hulya Gundesli; Beril Talim; Petek Korkusuz; Burcu Balci-Hayta; Sebahattin Cirak; Nurten Akarsu; Haluk Topaloglu; Pervin Dinçer
Limb-girdle muscular dystrophy (LGMD) is a genetically heterogeneous group of inherited muscular disorders manifesting symmetric, proximal, and slowly progressive muscle weakness. Using Affymetrix 250K SNP Array genotyping and homozygosity mapping, we mapped an autosomal-recessive LGMD phenotype to the telomeric portion of chromosome 8q in a consanguineous Turkish family with three affected individuals. DNA sequence analysis of PLEC identified a homozygous c.1_9del mutation containing an initiation codon in exon 1f, which is an isoform-specific sequence of plectin isoform 1f. The same homozygous mutation was also detected in two additional families during the analysis of 72 independent LGMD2-affected families. Moreover, we showed that the expression of PLEC was reduced in the patients muscle and that there was almost no expression for plectin 1f mRNA as a result of the mutation. In addition to dystrophic changes in muscle, ultrastructural alterations, such as membrane duplications, an enlarged space between the membrane and sarcomere, and misalignment of Z-disks, were observed by transmission electron microscopy. Unlike the control skeletal muscle, no sarcolemmal staining of plectin was detected in the patients muscle. We conclude that as a result of plectin 1f deficiency, the linkage between the sarcolemma and sarcomere is broken, which could affect the structural organization of the myofiber. Our data show that one of the isoforms of plectin plays a key role in skeletal muscle function and that disruption of the plectin 1f can cause the LGMD2 phenotype without any dermatologic component as was previously reported with mutations in constant exons of PLEC.
Journal of Medical Genetics | 2013
Nilgun Cetin; Burcu Balci-Hayta; Hulya Gundesli; Petek Korkusuz; Nuhan Purali; Beril Talim; Ersin Tan; Duygu Selcen; Sevim Erdem-Ozdamar; Pervin Dinçer
Background Autosomal recessive limb girdle muscular dystrophy (LGMD2) is a heterogeneous group of myopathies characterised by progressive muscle weakness involving proximal muscles of the shoulder and pelvic girdles including at least 17 different genetic entities. Additional loci have yet to be identified as there are families which are unlinked to any of the known loci. Here we have investigated a consanguineous family with LGMD2 with two affected individuals in order to identify the causative gene defect. Methods and results We performed genome wide homozygosity mapping and mapped the LGMD2 phenotype to chromosome 2q35–q36.3. DNA sequence analysis of the highly relevant candidate gene DES revealed a homozygous splice site mutation c.1289-2A>G in the two affected family members. Immunofluorescent staining and western blot analysis showed that the expression and the cytoskeletal network formation of mutant desmin were well preserved in skeletal muscle fibres. Unlike autosomal dominant desminopathies, ultrastructural alterations such as disruption of myofibrillar organisation, formation of myofibrillar degradation products and dislocation/aggregation of membranous organelles were not present. This novel splice site mutation results in addition of 16 amino acids within the tail domain of desmin, which has been suggested to interact with lamin B protein. We also detected a specific disruption of desmin-lamin B interaction in the skeletal muscle of the patient by confocal laser scanning microscopy. Conclusions Our study reveals that autosomal recessive mutations in DES cause LGMD2 phenotype without features of myofibrillar myopathy.
Neuromuscular Disorders | 2014
Gulsum Kayman-Kurekci; Beril Talim; Petek Korkusuz; Nilufer Sayar; Turkan Sarioglu; Ibrahim Oncel; Parisa Sharafi; Hulya Gundesli; Burcu Balci-Hayta; Nuhan Purali; Piraye Serdaroglu-Oflazer; Haluk Topaloglu; Pervin Dinçer
We performed genome-wide homozygosity mapping and mapped a novel myopathic phenotype to chromosomal region 1q25 in a consanguineous family with three affected individuals manifesting proximal and distal weakness and atrophy, rigid spine and contractures of the proximal and distal interphalangeal hand joints. Additionally, cardiomyopathy and respiratory involvement were noted. DNA sequencing of torsinA-interacting protein 1 (TOR1AIP1) gene encoding lamina-associated polypeptide 1B (LAP1B), showed a homozygous c.186delG mutation that causes a frameshift resulting in a premature stop codon (p.E62fsTer25). We observed that expression of LAP1B was absent in the patient skeletal muscle fibres. Ultrastructural examination showed intact sarcomeric organization but alterations of the nuclear envelope including nuclear fragmentation, chromatin bleb formation and naked chromatin. LAP1B is a type-2 integral membrane protein localized in the inner nuclear membrane that binds to both A- and B-type lamins, and is involved in the regulation of torsinA ATPase. Interestingly, luminal domain-like LAP1 (LULL1)-an endoplasmic reticulum-localized partner of torsinA-was overexpressed in the patients muscle in the absence of LAP1B. Therefore, the findings suggest that LAP1 and LULL1 might have a compensatory effect on each other. This study expands the spectrum of genes associated with nuclear envelopathies and highlights the critical function for LAP1B in striated muscle.
Cell Biology International | 2011
Burcu Balci-Hayta; Sevim Erdem-Ozdamar; Pervin Dinçer
The Abeta (amyloid‐beta) peptide is derived from the sequential cleavage of AbetaPP (amyloid‐beta precursor protein) by two enzymes, the β‐ and γ‐secretases. The major β‐secretase, identified as the novel transmembrane aspartic protease BACE1 (beta site APP‐cleaving enzyme 1), mediates the primary amyloidogenic cleavage of AbetaPP and initiates the production of Abeta. It has been implicated in the proteolytic processing of another substrate, namely ST6Gal1 (β galactoside α2,6‐sialyltransferase 1), which is the major α2,6‐sialyltransferase responsible for the broad synthesis of glycoproteins and glycolipids. The present study investigated the effect of overexpression of AbetaPP on expression and secretion of ST6Gal1 in skeletal muscle cells by inducing overexpression of wild‐type full‐length 751‐AbetaPP in the mouse myogenic cell line C2C12. Expression and secretion of the ST6Gal1 enzyme were analysed by Western blot and/or immunofluorescence staining. The results of our study demonstrated that AbetaPP overexpression in C2C12 cells increased the expression and the secretion of ST6Gal1 enzyme in vitro.
Journal of the Neurological Sciences | 2018
Burcu Balci-Hayta; Can Ebru Bekircan-Kurt; Evrim Aksu; Didem Dayangac-Erden; Ersin Tan; Sevim Erdem-Ozdamar
BACKGROUND Primary myoblast cell cultures display the phenotypic characteristics and genetic defects of the donor tissue and represent an in vitro model system reflecting the disease pathology. They have been generated only from freshly harvested tissue biopsies. Here, we describe a novel technique to establish myoblast cell cultures from cryopreserved skeletal muscle biopsy tissues that are useful for diagnostic and research purposes. METHODS AND RESULTS This protocol was performed on seven gradually frozen muscle biopsy specimens from various neuromuscular disorders that were stored in dimethylsulfoxide (DMSO)-supplemented freezing media at -80 °C for up to one year. After storage for varying periods of time, primary myoblast cultures were successfully established from all cryopreserved biopsy tissues without any chromosomal abnormality. Desmin immunoreactivity confirmed that the cell cultures contained >90% pure myoblasts. The myoblasts differentiated into multinucleated myotubes successfully. Furthermore, there were no statistically significant differences in cell viability, metabolic activity, population doubling time, and myocyte enhancer factor 2 (MEF2C) expression between cell cultures established from freshly harvested and one year-stored frozen tissue specimens. CONCLUSIONS This protocol opens up new horizons for basic research and the pre-clinical studies of novel therapies by using cryopreserved skeletal muscle biopsies stored under suitable conditions in tissue banks.
Neuromuscular Disorders | 2013
Burcu Balci-Hayta; Beril Talim; Pervin Dinçer; Haluk Topaloglu
The identification of two independent mutations is rarely described between affected members of the same family with Duchenne Muscular Dystrophy. This study reports the presence of two distinct intragenic dystrophin deletions in a Turkish family. Exon 54 deletion was identified originally in the proband, whereas his maternal cousin had deletions of exons 43-50 in the dystrophin gene. As indicated, only the mother of the proband was identified as exon 54 deletion carrier however, the probands cousin was detected as a sporadic case. These molecular genetic data reveal an interesting and novel mixture, in the same family, of both mutations of the same gene.
Neuromuscular Disorders | 2017
Burcu Balci-Hayta; Can Ebru Bekircan-Kurt; E. Aksu; Didem Dayangac-Erden; Ersin Tan; Sevim Erdem-Ozdamar
Acta Medica | 2016
Evrim Aksu; Burcu Balci-Hayta
Neuromuscular Disorders | 2013
N. Cetin; Burcu Balci-Hayta; Hulya Gundesli; Petek Korkusuz; Nuhan Purali; Beril Talim; Ersin Tan; Duygu Selcen; Sevim Erdem-Ozdamar; Pervin Dinçer