Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Byeong Chul Jeong is active.

Publication


Featured researches published by Byeong Chul Jeong.


Frontiers in Microbiology | 2016

Global Dissemination of Carbapenemase-Producing Klebsiella pneumoniae: Epidemiology, Genetic Context, Treatment Options, and Detection Methods

Chang-Ro Lee; Jung Hun Lee; Kwang Seung Park; Young Bae Kim; Byeong Chul Jeong; Sang Hee Lee

The emergence of carbapenem-resistant Gram-negative pathogens poses a serious threat to public health worldwide. In particular, the increasing prevalence of carbapenem-resistant Klebsiella pneumoniae is a major source of concern. K. pneumoniae carbapenemases (KPCs) and carbapenemases of the oxacillinase-48 (OXA-48) type have been reported worldwide. New Delhi metallo-β-lactamase (NDM) carbapenemases were originally identified in Sweden in 2008 and have spread worldwide rapidly. In this review, we summarize the epidemiology of K. pneumoniae producing three carbapenemases (KPCs, NDMs, and OXA-48-like). Although the prevalence of each resistant strain varies geographically, K. pneumoniae producing KPCs, NDMs, and OXA-48-like carbapenemases have become rapidly disseminated. In addition, we used recently published molecular and genetic studies to analyze the mechanisms by which these three carbapenemases, and major K. pneumoniae clones, such as ST258 and ST11, have become globally prevalent. Because carbapenemase-producing K. pneumoniae are often resistant to most β-lactam antibiotics and many other non-β-lactam molecules, the therapeutic options available to treat infection with these strains are limited to colistin, polymyxin B, fosfomycin, tigecycline, and selected aminoglycosides. Although, combination therapy has been recommended for the treatment of severe carbapenemase-producing K. pneumoniae infections, the clinical evidence for this strategy is currently limited, and more accurate randomized controlled trials will be required to establish the most effective treatment regimen. Moreover, because rapid and accurate identification of the carbapenemase type found in K. pneumoniae may be difficult to achieve through phenotypic antibiotic susceptibility tests, novel molecular detection techniques are currently being developed.


Journal of Clinical Microbiology | 2004

Molecular Characterization of Extended-Spectrum Beta-Lactamases Produced by Clinical Isolates of Klebsiella pneumoniae and Escherichia coli from a Korean Nationwide Survey

Seok Jeong; Il Kwon Bae; Jung Hun Lee; Seung Ghyu Sohn; Geun Ho Kang; Ghil Ja Jeon; Young Ho Kim; Byeong Chul Jeong; Sang Hee Lee

ABSTRACT To determine the prevalence and genotypes of extended-spectrum beta-lactamases (ESBLs) among clinical isolates of Klebsiella pneumoniae and Escherichia coli, we performed antibiotic susceptibility testing, pI determination, induction testing, transconjugation, and DNA sequencing analysis. Among the 509 isolates collected from 13 university hospitals in Korea, 39.2% produced ESBLs. ESBL-producing isolates were detected in every region in Korea. A total of 44.6% of the isolates produced both TEM- and SHV-type ESBLs, and 52% of ESBL-producing isolates transferred resistance to ceftazidime by transconjugation. The ESBLs were TEM-19, TEM-20, TEM-52, SHV-2a, SHV-12, and one new variant identified for the first time in Korea, namely, TEM-116. TEM-1 and SHV-12 were by far the most common variants. TEM-1, TEM-116, and SHV-12 showed a high prevalence in K. pneumoniae. Two isolates (E. coli SH16 and K. pneumoniae SV3) produced CMY-1-like beta-lactamases, which play a decisive role in resistance to cefoxitin and cefotetan, as well as TEM-type enzymes (TEM-20 and TEM-52, respectively). Using MIC patterns and DNA sequencing analysis, we postulated a possible evolution scheme among TEM-type beta-lactamases in Korea: from TEM-1 to TEM-19, from TEM-19 to TEM-20, and from TEM-20 to TEM-52.


International Journal of Environmental Research and Public Health | 2013

Strategies to Minimize Antibiotic Resistance

Chang-Ro Lee; Ill Hwan Cho; Byeong Chul Jeong; Sang Hee Lee

Antibiotic resistance can be reduced by using antibiotics prudently based on guidelines of antimicrobial stewardship programs (ASPs) and various data such as pharmacokinetic (PK) and pharmacodynamic (PD) properties of antibiotics, diagnostic testing, antimicrobial susceptibility testing (AST), clinical response, and effects on the microbiota, as well as by new antibiotic developments. The controlled use of antibiotics in food animals is another cornerstone among efforts to reduce antibiotic resistance. All major resistance-control strategies recommend education for patients, children (e.g., through schools and day care), the public, and relevant healthcare professionals (e.g., primary-care physicians, pharmacists, and medical students) regarding unique features of bacterial infections and antibiotics, prudent antibiotic prescribing as a positive construct, and personal hygiene (e.g., handwashing). The problem of antibiotic resistance can be minimized only by concerted efforts of all members of society for ensuring the continued efficiency of antibiotics.


Antimicrobial Agents and Chemotherapy | 2005

Impact of Clarithromycin Resistance on Eradication of Helicobacter pylori in Infected Adults

Jong Hwa Lee; Ji-Hyun Shin; Im Hwan Roe; Seung Ghyu Sohn; Jung Hun Lee; Geun Ho Kang; Han-Ki Lee; Byeong Chul Jeong; Sang Hee Lee

ABSTRACT The outcome of Helicobacter pylori infection was analyzed in 114 dyspeptic patients treated with triple-drug therapy including clarithromycin. Clarithromycin resistance (in 20.2% of our isolates) was mainly caused by an A2142G mutation in the 23S rRNA gene of H. pylori. H. pylori eradication was obtained in all patients with clarithromycin-susceptible isolates but not in any patients with clarithromycin-resistant isolates (P = 0.0001). Therefore, it would be useful to conduct H. pylori antimicrobial susceptibility testing of the first gastric biopsy culture before choosing the first three drugs for therapy of infected patients.


Frontiers in Cellular and Infection Microbiology | 2017

Biology of Acinetobacter baumannii: Pathogenesis, Antibiotic Resistance Mechanisms, and Prospective Treatment Options

Chang-Ro Lee; Jung Hun Lee; Moonhee Park; Kwang Seung Park; Il Kwon Bae; Young Bae Kim; Chang-Jun Cha; Byeong Chul Jeong; Sang Hee Lee

Acinetobacter baumannii is undoubtedly one of the most successful pathogens responsible for hospital-acquired nosocomial infections in the modern healthcare system. Due to the prevalence of infections and outbreaks caused by multi-drug resistant A. baumannii, few antibiotics are effective for treating infections caused by this pathogen. To overcome this problem, knowledge of the pathogenesis and antibiotic resistance mechanisms of A. baumannii is important. In this review, we summarize current studies on the virulence factors that contribute to A. baumannii pathogenesis, including porins, capsular polysaccharides, lipopolysaccharides, phospholipases, outer membrane vesicles, metal acquisition systems, and protein secretion systems. Mechanisms of antibiotic resistance of this organism, including acquirement of β-lactamases, up-regulation of multidrug efflux pumps, modification of aminoglycosides, permeability defects, and alteration of target sites, are also discussed. Lastly, novel prospective treatment options for infections caused by multi-drug resistant A. baumannii are summarized.


International Journal of Molecular Sciences | 2015

Structural Basis for Carbapenem-Hydrolyzing Mechanisms of Carbapenemases Conferring Antibiotic Resistance

Jeong Ho Jeon; Jung Hun Lee; Jae Jin Lee; Kwang Seung Park; Asad Mustafa Karim; Chang Ro Lee; Byeong Chul Jeong; Sang Hee Lee

Carbapenems (imipenem, meropenem, biapenem, ertapenem, and doripenem) are β-lactam antimicrobial agents. Because carbapenems have the broadest spectra among all β-lactams and are primarily used to treat infections by multi-resistant Gram-negative bacteria, the emergence and spread of carbapenemases became a major public health concern. Carbapenemases are the most versatile family of β-lactamases that are able to hydrolyze carbapenems and many other β-lactams. According to the dependency of divalent cations for enzyme activation, carbapenemases can be divided into metallo-carbapenemases (zinc-dependent class B) and non-metallo-carbapenemases (zinc-independent classes A, C, and D). Many studies have provided various carbapenemase structures. Here we present a comprehensive and systematic review of three-dimensional structures of carbapenemase-carbapenem complexes as well as those of carbapenemases. We update recent studies in understanding the enzymatic mechanism of each class of carbapenemase, and summarize structural insights about regions and residues that are important in acquiring the carbapenemase activity.


BioMed Research International | 2015

Educational Effectiveness, Target, and Content for Prudent Antibiotic Use

Chang-Ro Lee; Jung Hun Lee; Lin-Woo Kang; Byeong Chul Jeong; Sang Hee Lee

Widespread antimicrobial use and concomitant resistance have led to a significant threat to public health. Because inappropriate use and overuse of antibiotics based on insufficient knowledge are one of the major drivers of antibiotic resistance, education about prudent antibiotic use aimed at both the prescribers and the public is important. This review investigates recent studies on the effect of interventions for promoting prudent antibiotics prescribing. Up to now, most educational efforts have been targeted to medical professionals, and many studies showed that these educational efforts are significantly effective in reducing antibiotic prescribing. Recently, the development of educational programs to reduce antibiotic use is expanding into other groups, such as the adult public and children. The investigation of the contents of educational programs for prescribers and the public demonstrates that it is important to develop effective educational programs suitable for each group. In particular, it seems now to be crucial to develop appropriate curricula for teaching medical and nonmedical (pharmacy, dentistry, nursing, veterinary medicine, and midwifery) undergraduate students about general medicine, microbial virulence, mechanism of antibiotic resistance, and judicious antibiotic prescribing.


Letters in Applied Microbiology | 2004

Investigation of extended-spectrum β-lactamases produced by clinical isolates of Klebsiella pneumoniae and Escherichia coli in Korea

Seok Hoon Jeong; Il Kwon Bae; S.B. Kwon; Jung Hun Lee; Ha Il Jung; Jae Seok Song; Byeong Chul Jeong; S.-J. Kim; Sang Hee Lee

Aims:  Isolates obtained from various regions in Korea in 2002 were identified and their susceptibility to extended‐spectrum cephalosporins, monobactams and/or cephamycins was studied along with any production of extended‐spectrum β‐lactamases (ESBLs).


Current Pharmaceutical Design | 2013

Lipid a biosynthesis of multidrug-resistant pathogens - a novel drug target.

Chang-Ro Lee; Jung Hun Lee; Byeong Chul Jeong; Sang Hee Lee

The rapid increase of human infections by multidrug-resistant (MDR) Gram-negative pathogens poses a serious health threat and demands the identification of new strategies, molecular targets, and agents for the treatment of Gram-negative bacterial infections. The biosynthesis of lipid A, the membrane-anchoring portion of lipopolysaccharide (LPS), is one promising target for novel antibiotic design because lipid A is essential for LPS assembly in most Gram-negative bacteria. The first three enzymes in the biosynthesis of lipid A, UDP-N-acetylglucosamine acyltransferase (LpxA), UDP-3-O-(R-3-hydroxyacyl)-N-acetylglucosamine deacetylase (LpxC) and UDP- 3-O-(R-3-hydroxyacyl)glucosamine N-acyltransferase (LpxD), have emerged as an attractive Gram-negative antibacterial molecular target. In this article, we review recent advances in the studies on the structures and the structure-based drug designs of the three enzymes.


Applied and Environmental Microbiology | 2006

Cloning, Expression, and Characterization of Aminopeptidase P from the Hyperthermophilic Archaeon Thermococcus sp. Strain NA1

Hyun Sook Lee; Yun Jae Kim; Seung Seob Bae; Jeong Ho Jeon; Jae Kyu Lim; Byeong Chul Jeong; Sung Gyun Kang; Jung-Hyun Lee

ABSTRACT Genomic analysis of a hyperthermophilic archaeon, Thermococcus sp. strain NA1, revealed the presence of a 1,068-bp open reading frame encoding a protein consisting of 356 amino acids with a calculated molecular mass of 39,714 Da (GenBank accession no. DQ144132). Sequence analysis showed that it was similar to the putative aminopeptidase P (APP) of Thermococcus kodakaraensis KOD1. Amino acid residues important for catalytic activity and the metal binding ligands conserved in bacterial, nematode, insect, and mammalian APPs were also conserved in the Thermococcus sp. strain NA1 APP. The archaeal APP, designated TNA1_APP (Thermococcus sp. strain NA1 APP), was cloned and expressed in Escherichia coli. The recombinant enzyme hydrolyzed the amino-terminal Xaa-Pro bond of Lys(Nε-Abz)-Pro-Pro-pNA and the dipeptide Met-Pro (Km, 0.96 mM), revealing its functional identity. Further enzyme characterization showed the enzyme to be a Co2+-, Mn2+-, or Zn2+-dependent metallopeptidase. Optimal APP activity with Met-Pro as the substrate occurred at pH 5 and a temperature of 100°C. The APP was thermostable, with a half-life of >100 min at 80°C. This study represents the first characterization of a hyperthermophilic archaeon APP.

Collaboration


Dive into the Byeong Chul Jeong's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge