Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Byoung Il Je is active.

Publication


Featured researches published by Byoung Il Je.


Plant Journal | 2008

Rice Indeterminate 1 (OsId1) is necessary for the expression of Ehd1 (Early heading date 1) regardless of photoperiod.

Soon Ju Park; Song Lim Kim; Shinyoung Lee; Byoung Il Je; Hai Long Piao; Sung Han Park; Chul Min Kim; Choong-Hwan Ryu; Su Hyun Park; Yuan Hu Xuan; Joseph Colasanti; Gynheung An; Chang-deok Han

Indeterminate 1 (Id1), a classical flowering gene first reported in 1946, is one of the earliest genes whose expression in leaf tissues affects the floral transition in the shoot meristem. How Id1 is integrated into the flowering process is largely unknown. In this study, we examined the genetic action of the rice (Oryza sativa) ortholog OsId1. In rice, OsId1 is preferentially expressed in young leaves, but the overall expression pattern is broader than that in maize (Zea mays). OsId1 is able to activate transcription in yeast. RNAi mutants show a delay in flowering under both short-day (SD) and long-day (LD) conditions. OsId1 regulates the expression of Ehd1 (Early heading date 1) and its downstream genes, including Hd3a (a rice ortholog of FT) and RFT1 (Rice Flowering Locus T1), under both SD and LD conditions. In rice, the expression of Ehd1 is also controlled by the photoperiodic flowering genes OsGI (a rice ortholog of GI) and OsMADS51. However, the expression of OsId1 is independent of OsGI, OsMADS51, and OsMADS50 (a rice SOC1 ortholog). This study demonstrates that the activation of Ehd1 by OsId1 is required for the promotion of flowering.


Plant Physiology | 2007

OsCSLD1, a Cellulose Synthase-Like D1 Gene, Is Required for Root Hair Morphogenesis in Rice

Chul Min Kim; Sung Han Park; Byoung Il Je; Su Hyun Park; Soon Ju Park; Hai Long Piao; Moo Young Eun; Liam Dolan; Chang-deok Han

Root hairs are long tubular outgrowths that form on the surface of specialized epidermal cells. They are required for nutrient and water uptake and interact with the soil microflora. Here we show that the Oryza sativa cellulose synthase-like D1 (OsCSLD1) gene is required for root hair development, as rice (Oryza sativa) mutants that lack OsCSLD1 function develop abnormal root hairs. In these mutants, while hair development is initiated normally, the hairs elongate less than the wild-type hairs and they have kinks and swellings along their length. Because the csld1 mutants develop the same density and number of root hairs along their seminal root as the wild-type plants, we propose that OsCSLD1 function is required for hair elongation but not initiation. Both gene trap expression pattern and in situ hybridization analyses indicate that OsCSLD1 is expressed in only root hair cells. Furthermore, OsCSLD1 is the only member of the four rice CSLD genes that shows root-specific expression. Given that the Arabidopsis (Arabidopsis thaliana) gene KOJAK/AtCSLD3 is required for root hair elongation and is expressed in the root hair, it appears that OsCSLD1 may be the functional ortholog of KOJAK/AtCSLD3 and that these two genes represent the root hair-specific members of this family of proteins. Thus, at least part of the mechanism of root hair morphogenesis in Arabidopsis is conserved in rice.


The Plant Cell | 2010

RAV-Like1 Maintains Brassinosteroid Homeostasis via the Coordinated Activation of BRI1 and Biosynthetic Genes in Rice

Byoung Il Je; Hai Long Piao; Soon Ju Park; Sung Han Park; Chul Min Kim; Yuan Hu Xuan; Su Hyun Park; Jin Huang; Yang Do Choi; Gynheung An; Hann Ling Wong; Shozo Fujioka; Min-Chul Kim; Ko Shimamoto; Chang-deok Han

Brassinosteroid (BR) homeostasis is established by the regulatory circuit between receptor BRI1-mediated signaling and BR synthesis. RAVL1 modulates the strength of the circuit by activating expression of both BRI1 and synthetic genes and is necessary for feedback responses to BR levels. Temporal and spatial variation in the levels of and sensitivity to hormones are essential for the development of higher organisms. Traditionally, end-product feedback regulation has been considered as the key mechanism for the achievement of cellular homeostasis. Brassinosteroids (BRs) are plant steroid hormones that are perceived by the cell surface receptor kinase Brassinosteroid Insensitive1. Binding of these hormones to the receptor activates BR signaling and eventually suppresses BR synthesis. This report shows that RAVL1 regulates the expression of the BR receptor. Furthermore, RAVL1 is also required for the expression of the BR biosynthetic genes D2, D11, and BRD1 that are subject to BR negative feedback. Activation by RAVL1 was coordinated via E-box cis-elements in the promoters of the receptor and biosynthetic genes. Also, RAVL1 is necessary for the response of these genes to changes in cellular BR homeostasis. Genetic evidence is presented to strengthen the observation that the primary action of RAVL1 mediates the expression of genes involved in BR signaling and biosynthesis. This study thus describes a regulatory circuit modulating the homeostasis of BR in which RAVL1 ensures the basal activity of both the signaling and the biosynthetic pathways.


Molecules and Cells | 2010

OsCIPK31, a CBL-Interacting Protein Kinase Is Involved in Germination and Seedling Growth under Abiotic Stress Conditions in Rice Plants

Hai Long Piao; Yuan Hu Xuan; Su Hyun Park; Byoung Il Je; Soon Ju Park; Sung Han Park; Chul Min Kim; Jin Huang; Guo Kui Wang; Min Jung Kim; Sang Mo Kang; In-Jung Lee; Taek-Ryoun Kwon; Yong Hwan Kim; Un-Sang Yeo; Gihwan Yi; Daeyoung Son; Chang-deok Han

Calcineurin B-like protein-interacting protein kinases (CIPKs) are a group of typical Ser/Thr protein kinases that mediate calcium signals. Extensive studies using Arabidopsis plants have demonstrated that many calcium signatures that activate CIPKs originate from abiotic stresses. However, there are few reports on the functional demonstration of CIPKs in other plants, especially in grasses. In this study, we used a loss-of-function mutation to characterize the function of the rice CIPK gene OsCIPK31. Exposure to high concentrations of NaCl or mannitol effected a rapid and transient enhancement of OsCIPK31 expression. These findings were observed only in the light. However, longer exposure to most stresses resulted in downregulation of OsCIPK31 expression in both the presence and absence of light. To determine the physiological roles of OsCIPK31 in rice plants, the sensitivity of oscipk31::Ds, which is a transposon Ds insertion mutant, to abiotic stresses was examined during germination and seedling stages. oscipk31::Ds mutants exhibited hypersensitive phenotypes to ABA, salt, mannitol, and glucose. Compared with wild-type rice plants, mutants exhibited retarded germination and slow seedling growth. In addition, oscipk31::Ds seedlings exhibited enhanced expression of several stress-responsive genes after exposure to these abiotic stresses. However, the expression of ABA metabolic genes and the endogenous levels of ABA were not altered significantly in the oscipk31::Ds mutant. This study demonstrated that rice plants use OsCIPK31 to modulate responses to abiotic stresses during the seed germination and seedling stages and to modulate the expression of stress-responsive genes.


Plant Molecular Biology | 2007

Analysis of gene-trap Ds rice populations in Korea

Sung Han Park; Nam Soo Jun; Chul Min Kim; Tae Yong Oh; Jin Huang; Yuan Hu Xuan; Soon Ju Park; Byoung Il Je; Hai Long Piao; Soo Hyun Park; Young Soon Cha; Byung Ohg Ahn; Hyeon So Ji; Myung Chul Lee; Seok Cheol Suh; Min-Hee Nam; Moo Young Eun; Gihwan Yi; Doh Won Yun; Chang-deok Han

Insertional mutagen-mediated gene tagging populations have been essential resources for analyzing the function of plant genes. In rice, maize transposable elements have been successfully utilized to produce transposant populations. However, many generations and substantial field space are required to obtain a sufficiently sized transposant population. In rice, the japonica and indica subspecies are phenotypically and genetically divergent. Here, callus cultures with seeds carrying Ac and Ds were used to produce 89,700 lines of Dongjin, a japonica cultivar, and 6,200 lines of MGRI079, whose genome is composed of a mixture of the genetic backgrounds of japonica and indica. Of the more than 3,000 lines examined, 67% had Ds elements. Among the Ds-carrying lines, 81% of Dongjin and 63% of MGRI079 contained transposed Ds, with an average of around 2.0 copies. By examining more than 15,000 lines, it was found that 12% expressed the reporter gene GUS during the early-seedling stage. GUS was expressed in root hairs and crown root initials at estimated frequencies of 0.78% and 0.34%, respectively. The 5,271 analyzed Ds loci were found to be randomly distributed over all of the rice chromosomes.


Plant Molecular Biology | 2013

OsSNDP1, a Sec14-nodulin domain-containing protein, plays a critical role in root hair elongation in rice

Jin Huang; Chul Min Kim; Yuan Hu Xuan; Soon Ju Park; Hai Long Piao; Byoung Il Je; Jingmiao Liu; Tae-Ho Kim; B. M. Kim; Chang-deok Han

Rice is cultivated in water-logged paddy lands. Thus, rice root hairs on the epidermal layers are exposed to a different redox status of nitrogen species, organic acids, and metal ions than root hairs growing in drained soil. To identify genes that play an important role in root hair growth, a forward genetics approach was used to screen for short-root-hair mutants. A short-root-hair mutant was identified and isolated by using map-based cloning and sequencing. The mutation arose from a single amino acid substitution of OsSNDP1 (Oryza sativa Sec14-nodulin domain protein), which shows high sequence homology with Arabidopsis COW1/AtSFH1 and encodes a phosphatidylinositol transfer protein (PITP). By performing complementation assays with Atsfh1 mutants, we demonstrated that OsSNDP1 is involved in growth of root hairs. Cryo-scanning electron microscopy was utilized to further characterize the effect of the Ossndp1 mutation on root hair morphology. Aberrant morphogenesis was detected in root hair elongation and maturation zones. Many root hairs were branched and showed irregular shapes due to bulged nodes. Many epidermal cells also produced dome-shaped root hairs, which indicated that root hair elongation ceased at an early stage. These studies showed that PITP-mediated phospholipid signaling and metabolism is critical for root hair elongation in rice.


New Phytologist | 2013

Indeterminate domain 10 regulates ammonium‐mediated gene expression in rice roots

Yuan Hu Xuan; Ryza A. Priatama; Jin Huang; Byoung Il Je; Jing Miao Liu; Soon Ju Park; Hai Long Piao; Dae Young Son; Jeung Joo Lee; Sung Han Park; Ki Hong Jung; Tae-Ho Kim; Chang-deok Han

Indeterminate domain (IDD) genes are a family of plant transcriptional regulators that function in the control of development and metabolism during growth. Here, the function of Oryza sativa indeterminate domain 10 (OsIDD10) has been explored in rice plants. Compared with wild-type roots, idd10 mutant roots are hypersensitive to exogenous ammonium. This work aims to define the action of IDD10 on gene expression involved in ammonium uptake and nitrogen (N) metabolism. The ammonium induction of key ammonium uptake and assimilation genes was examined in the roots of idd10 mutants and IDD10 overexpressors. Molecular studies and transcriptome analysis were performed to identify target genes and IDD10 binding cis-elements. IDD10 activates the transcription of AMT1;2 and GDH2 by binding to a cis-element motif present in the promoter region of AMT1;2 and in the fifth intron of GDH2. IDD10 contributes significantly to the induction of several genes involved in N-linked metabolic and cellular responses, including genes encoding glutamine synthetase 2, nitrite reductases and trehalose-6-phosphate synthase. Furthermore, the possibility that IDD10 might influence the N-mediated feedback regulation of target genes was examined. This study demonstrates that IDD10 is involved in regulatory circuits that determine N-mediated gene expression in plant roots.


Planta | 2007

A Ds-insertion mutant of OSH6 (Oryza sativa Homeobox 6) exhibits outgrowth of vestigial leaf-like structures, bracts, in rice

Sung Han Park; Chul Min Kim; Byoung Il Je; Su Hyun Park; Soon Ju Park; Hai Long Piao; Yuan Hu Xuan; Mi Sook Choe; Kouji Satoh; Shoshi Kikuchi; Kon Ho Lee; Young Soon Cha; Byung Ohg Ahn; Hyeon So Ji; Doh Won Yun; Myung Chul Lee; Seok-Cheol Suh; Moo Young Eun; Chang-deok Han

OSH6 (Oryza sativa Homeobox6) is an ortholog of lg3 (Liguleless3) in maize. We generated a novel allele, termed OSH6-Ds, by inserting a defective Ds element into the third exon of OSH6, which resulted in a truncated OSH6 mRNA. The truncated mRNA was expressed ectopically in leaf tissues and encoded the N-terminal region of OSH6, which includes the KNOX1 and partial KNOX2 subdomains. This recessive mutant showed outgrowth of bracts or produced leaves at the basal node of the panicle. These phenotypes distinguished it from the OSH6 transgene whose ectopic expression led to a “blade to sheath transformation” phenotype at the midrib region of leaves, similar to that seen in dominant Lg3 mutants. Expression of a similar truncated OSH6 cDNA from the 35S promoter (35S::ΔOSH6) confirmed that the ectopic expression of this product was responsible for the aberrant bract development. These data suggest that OSH6-Ds interferes with a developmental mechanism involved in bract differentiation, especially at the basal nodes of panicles.


Journal of Experimental Botany | 2016

Loose Plant Architecture1 (LPA1) determines lamina joint bending by suppressing auxin signalling that interacts with C-22-hydroxylated and 6-deoxo brassinosteroids in rice

Jing Miao Liu; Soon Ju Park; Jin Huang; Eun Jin Lee; Yuan Hu Xuan; Byoung Il Je; Vikranth Kumar; Ryza A. Priatama; Vimal Raj K; Sung Hoon Kim; Myung Ki Min; Jun Hyeon Cho; Tae-Ho Kim; Anil Kumar Nalini Chandran; Ki Hong Jung; Suguru Takatsuto; Shozo Fujioka; Chang-deok Han

Highlight LPA1 suppresses auxin signalling that interacts with C-22-hydroxylated and 6-deoxo brassinosteroids, which regulates lamina inclination independently of OsBRI1.


Nucleic Acids Research | 2011

Transposon Ac/Ds-induced chromosomal rearrangements at the rice OsRLG5 locus

Yuan Hu Xuan; Hai Long Piao; Byoung Il Je; Soon Ju Park; Su Hyun Park; Jin Huang; Jianbo Zhang; Thomas Peterson; Chang-deok Han

Previous studies have shown that pairs of closely-linked Ac/Ds transposable elements can induce various chromosomal rearrangements in plant genomes. To study chromosomal rearrangements in rice, we isolated a line (OsRLG5-161) that contains two inversely-oriented Ds insertions in OsRLG5 (Oryza sativa Receptor like kinase Gene 5). Among approximately 300 plants regenerated from OsRLG5-161 heterozygous seeds, 107 contained rearrangements including deletions, duplications and inversions of various sizes. Most rearrangements were induced by previously identified alternative transposition mechanism. Furthermore, we also detected a new class of rearrangements that contain juxtaposed inversions and deletions on the same chromosome. We propose that these novel alleles were generated by a previously unreported type of alternative transposition reactions involving the 5′ and 3′ termini of two inversely-oriented Ds elements located on the same chromatid. Finally, 11% of rearrangements contained inversions resulting from homologous recombination between the two inverted Ds elements in OsRLG5-161. The high frequency inheritance and great variety of rearrangements obtained suggests that the rice regeneration system results in a burst of transposition activity and a relaxation of the controls which normally limit the transposition competence of individual Ds termini. Together, these results demonstrate a greatly enlarged potential of the Ac/Ds system for plant chromosome engineering.

Collaboration


Dive into the Byoung Il Je's collaboration.

Top Co-Authors

Avatar

Chang-deok Han

Gyeongsang National University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Chul Min Kim

Gyeongsang National University

View shared research outputs
Top Co-Authors

Avatar

Hai Long Piao

Gyeongsang National University

View shared research outputs
Top Co-Authors

Avatar

Yuan Hu Xuan

Shenyang Agricultural University

View shared research outputs
Top Co-Authors

Avatar

Sung Han Park

Gyeongsang National University

View shared research outputs
Top Co-Authors

Avatar

Jin Huang

Gyeongsang National University

View shared research outputs
Top Co-Authors

Avatar

Eun Jin Lee

Gyeongsang National University

View shared research outputs
Top Co-Authors

Avatar

Su Hyun Park

Gyeongsang National University

View shared research outputs
Top Co-Authors

Avatar

Kon Ho Lee

Gyeongsang National University

View shared research outputs
Researchain Logo
Decentralizing Knowledge