Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Byoung-In Sang is active.

Publication


Featured researches published by Byoung-In Sang.


The Scientific World Journal | 2012

The Future of Butyric Acid in Industry

Mohammed Dwidar; Jae-Yeon Park; Robert J. Mitchell; Byoung-In Sang

In this paper, the different applications of butyric acid and its current and future production status are highlighted, with a particular emphasis on the biofuels industry. As such, this paper discusses different issues regarding butyric acid fermentations and provides suggestions for future improvements and their approaches.


Bioresource Technology | 2011

Optimization of medium compositions favoring butanol and 1,3-propanediol production from glycerol by Clostridium pasteurianum

Chuloo Moon; Chang Hwan Lee; Byoung-In Sang; Youngsoon Um

Medium compositions favoring butanol and 1,3-propanediol (1,3-PDO) production from glycerol by Clostridium pasteurianum DSM525 were investigated using statistical experimental designs. Medium components affecting butanol and 1,3-PDO production were screened using a fractional factorial experimental design. Among the six tested variables (phosphate buffer, MnSO4·H2O, MgSO4·7H2O, FeSO4·7H2O, (NH4)2SO4, and yeast extract), FeSO4·7H2O, (NH4)2SO4, and yeast extract were found to be significant variables for further optimization of medium using a Box-Behnken design. Optimal butanol (0.98 g/L/h) and 1,3-PDO (1.19 g/L/h) productivities were predicted by the corresponding quadratic model for each product and the models were validated experimentally under optimized conditions. The optimal medium composition for butanol production was significantly different from that for 1,3-PDO production (0.06 vs. 0 g/L for FeSO4·7H2O, 7.35 vs. 0 g/L for (NH4)2SO4, and 5.08 vs. 8.0 g/L for yeast extract), suggesting that the product formation from glycerol by C. pasteurianum DSM525 can be controlled by changing medium compositions.


Biotechnology and Bioengineering | 2012

Butyrate production enhancement by Clostridium tyrobutyricum using electron mediators and a cathodic electron donor

Okkyoung Choi; Youngsoon Um; Byoung-In Sang

Electron mediators and electron supply through a cathode were examined to enhance the reducing power for butyrate production by an acidogenic clostridium strain, Clostridium tyrobutyricum BAS 7. Among the tested electron mediators, methyl viologen (MV)‐amended cultures showed an increase of butyrate productivity (1.3 times), final concentration (1.4 times), and yield (1.3 times). The electron flow altered by MV addition from the ferredoxin pool to the NADH pool was shown by one electron model, implying that more available NADH increased butyrate production. In the cathode compartment poised at −400 mV versus the Ag/AgCl electrode, the neutral red (NR)‐amended cultures of Clostridium tyrobutyricum BAS 7 increased butyrate concentration (from 5 to 8.8 g/L) and yield (from 0.33 up to 0.44 g/g) with no acetate production at all. Given that electrically reduced NR (NRred, yellow) by the cathode was re‐oxidized (NRox, red) in the cells on the basis of color change, electron flow from NRred to NAD+ (i.e., NADH generation) induced an increase in butyrate production. This is the first report to show the increase of butyric acid production by electrically driven acidogenesis. These results show that the electron flow altered NADH formation by electron mediators and by the cathodic electron donor, increasing the yield and selectivity of reduced end‐products like butyrate. Biotechnol. Bioeng. 2012; 109: 2494–2502.


Enzyme and Microbial Technology | 2013

In situ extractive fermentation for the production of hexanoic acid from galactitol by Clostridium sp. BS-1.

Byoung Seung Jeon; Chuloo Moon; Byung-Chun Kim; Hyunook Kim; Youngsoon Um; Byoung-In Sang

Clostridium sp. BS-1 produces hexanoic acid as a metabolite using galactitol and enhanced hexanoic acid production was obtained by in situ extractive fermentation with Clostridium sp. BS-1 under an optimized medium composition. For medium optimization, five ingredients were selected as variables, and among them yeast extract, tryptone, and sodium butyrate were selected as significant variables according to a fractional factorial experimental design, a steepest ascent experimental design, and a Box-Behnken experimental design. The optimized medium had the following compositions in modified Clostridium acetobutyricum (mCAB) medium: 15.5gL(-1) of yeast extract, 10.13gL(-1) of tryptone, 0.04gL(-1) of FeSO4·7H2O, 0.85gL(-1) of sodium acetate, and 6.47gL(-1) of sodium butyrate. The predicted concentration of hexanoic acid with the optimized medium was 6.98gL(-1), and this was validated experimentally by producing 6.96gL(-1) of hexanoic acid with Clostridium sp. BS-1 under the optimized conditions. In situ extractive fermentation for hexanoic acid removal was then applied in a batch culture system with the optimized medium and 10% (v/v) alamine 336 in oleyl alcohol as an extractive solvent. The pH of the culture in the extractive fermentation was maintained at 5.4-5.6 by an acid balance between production and retrieval by extraction. During a 16 day culture, the hexanoic acid concentration in the solvent increased to 32gL(-1) while it was maintained in a range of 1-2gL(-1) in the medium. The maximum rate of hexanoic acid production was 0.34gL(-1)h(-1) in in situ extractive fermentation.


Enzyme and Microbial Technology | 2011

A biosensor based on the self-entrapment of glucose oxidase within biomimetic silica nanoparticles induced by a fusion enzyme

Okkyoung Choi; Byung-Chun Kim; Ji Hye An; Kyoungseon Min; Yong Hwan Kim; Youngsoon Um; Min Kyu Oh; Byoung-In Sang

We constructed a fusion protein (GOx-R5) consisting of R5 (a polypeptide component of silaffin) and glucose oxidase (GOx) that was expressed in Pichia pastoris. Silaffin proteins are responsible for the formation of a silica-based cell matrix of diatoms, and synthetic variants of the R5 protein can perform silicification in vitro[1]. GOx secreted by P. pastoris was self-immobilized (biosilicification) in a pH 5 citric buffer using 0.1M tetramethoxysilane as a silica source. This self-entrapment property of GOx-R5 was used to immobilize GOx on a graphite rod electrode. An electric cell designed as a biosensor was prepared to monitor the glucose concentrations. The electric cell consisted of an Ag/AgCl reference electrode, a platinum counter electrode, and a working electrode modified with poly(neutral red) (PNR)/GOx/Nafion. Glucose oxidase was immobilized by fused protein on poly(neutral red) and covered by Nafion to protect diffusion to the solution. The morphology of the resulting composite PNR/GOx/Nafion material was analyzed by scanning electron microscopy (SEM). This amperometric transducer was characterized electrochemically using cyclic voltammetry and amperometry in the presence of glucose. An image produced by scanning electron microscopy supported the formation of a PNR/GOx complex and the current was increased to 1.58 μA cm(-1) by adding 1mM glucose at an applied potential of -0.5 V. The current was detected by way of PNR-reduced hydrogen peroxide, a product of the glucose oxidation by GOx. The detection limit was 0.67mM (S/N=3). The biosensor containing the graphite rod/PNR/GOx/Nafion detected glucose at various concentrations in mixed samples, which contained interfering molecules. In this study, we report the first expression of R5 fused to glucose oxidase in eukaryotic cells and demonstrate an application of self-entrapped GOx to a glucose biosensor.


Applied Biochemistry and Biotechnology | 2011

Global Gene Response in Saccharomyces cerevisiae Exposed to Silver Nanoparticles

Javed H. Niazi; Byoung-In Sang; Yeon Seok Kim; Man Bock Gu

Silver nanoparticles (AgNPs), exhibiting a broad size range and morphologies with highly reactive facets, which are widely applicable in real-life but not fully verified for biosafety and ecotoxicity, were subjected to report transcriptome profile in yeast Saccharomyces cerevisiae. A large number of genes accounted for ∼3% and ∼5% of the genome affected by AgNPs and Ag-ions, respectively. Principal component and cluster analysis suggest that the different physical forms of Ag were the major cause in differential expression profile. Among 90 genes affected by both AgNPs and Ag-ions, metalloprotein mediating high resistance to copper (CUP1-1 and CUP1-2) were strongly induced by AgNPs (∼45-folds) and Ag-ions (∼22-folds), respectively. A total of 17 genes, responsive to chemical stimuli, stress, and transport processes, were differentially induced by AgNPs. The differential expression was also seen with Ag-ions that affected 73 up- and 161 down-regulating genes, and most of these were involved in ion transport and homeostasis. This study provides new information on the knowledge for impact of nanoparticles on living microorganisms that can be extended to other nanoparticles.


Biotechnology for Biofuels | 2013

Co-culturing a novel Bacillus strain with Clostridium tyrobutyricum ATCC 25755 to produce butyric acid from sucrose.

Mohammed Dwidar; Seil Kim; Byoung Seung Jeon; Youngsoon Um; Robert J. Mitchell; Byoung-In Sang

BackgroundCurrently, the most promising microorganism used for the bio-production of butyric acid is Clostridium tyrobutyricum ATCC 25755T; however, it is unable to use sucrose as a sole carbon source. Consequently, a newly isolated strain, Bacillu s sp. SGP1, that was found to produce a levansucrase enzyme, which hydrolyzes sucrose into fructose and glucose, was used in a co-culture with this strain, permitting C. tyrobutyricum ATCC 25755T to ferment sucrose to butyric acid.ResultsB. sp. SGP1 alone did not show any butyric acid production and the main metabolite produced was lactic acid. This allowed C. tyrobutyricum ATCC 25755T to utilize the monosaccharides resulting from the activity of levansucrase together with the lactic acid produced by B. sp. SGP1 to generate butyric acid, which was the main fermentative product within the co-culture. Furthermore, the final acetic acid concentration in the co-culture was significantly lower when compared with pure C. tyrobutyricum ATCC 25755T cultures grown on glucose. In fed-batch fermentations, the optimum conditions for the production of butyric acid were around pH 5.50 and a temperature of 37°C. Under these conditions, the final butyrate concentration was 34.2±1.8 g/L with yields of 0.35±0.03 g butyrate/g sucrose and maximum productivity of 0.3±0.04 g/L/h.ConclusionsUsing this co-culture, sucrose can be utilized as a carbon source for butyric acid production at a relatively high yield. In addition, this co-culture offers also the benefit of a greater selectivity, with butyric acid constituting 92.8% of the acids when the fermentation was terminated.


Optics Express | 2014

Effect of geometric lattice design on optical/electrical properties of transparent silver grid for organic solar cells

Ju Won Lim; Young Tack Lee; Rina Pandey; Tae Hee Yoo; Byoung-In Sang; Byeong Kwon Ju; Do Kyung Hwang; Won Kook Choi

Silver (Ag) grid transparent electrode is one of the most promising transparent conducting electrodes (TCEs) to replace conventional indium tin oxide (ITO). We systematically investigate an effect of geometric lattice modifications on optical and electrical properties of Ag grid electrode. The reference Ag grid with 5 μm width and 100 μm pitch (duty of 0.05) prepared by conventional photo-lithography and lift-off processes shows the sheet resistance of 13.27 Ω/sq, transmittance of 81.1%, and resultant figure of merit (FOM) of 129.05. Three different modified Ag grid electrodes with stripe added-mesh (SAM), triangle-added mesh (TAM), and diagonal-added mesh (DAM) are suggested to improve optical and electrical properties. Although all three of SAM, TAM, and DAM Ag grid electrodes exhibit the lower transmittance values of about 72 - 77%, they showed much decreased sheet resistance of 6 - 8 Ω/sq. As a result, all of the lattice-modified Ag grid electrodes display significant improvement of FOM and the highest value of 171.14 is obtained from DAM Ag grid, which is comparable to that of conventional ITO electrode (175.46). Also, the feasibility of DAM Ag gird electrode for use in organic solar cell is confirmed by finite difference time domain (FDTD) simulations. Unlike a conventional ITO electrode, DAM Ag grid electrode can induce light scattering and trapping due to the diffuse transmission that compensates for the loss in optical transparency, resulting in comparable light absorption in the photo active layer of poly(3-hexylthiophene) (P3HT): [6,6]-phenyl-C61-butyric acid methyl ester (PC₆₀BM). P3HT:PC₆₀BM based OSCs with the DAM Ag grid electrode were fabricated, which also showed the potential for ITO-free transparent electrode.


Bioresource Technology | 2012

Identification of Escherichia coli biomarkers responsive to various lignin-hydrolysate compounds.

Siseon Lee; Dougu Nam; Joon Young Jung; Min Kyu Oh; Byoung-In Sang; Robert J. Mitchell

Aberrations in the growth and transcriptome of Escherichia coli str. BL21(DE3) were determined when exposed to varying concentrations of ferulic acid (0.25-1 g/L), an aromatic carboxylic acid identified within lignin-cellulose hydrolysate samples. The expression of several individual genes (aaeA, aaeB, inaA and marA) was significantly induced, i.e., more than 4-fold, and thus these genes and the heat shock response gene htpG were selected as biomarkers to monitor E. colis responses to five additional hydrolysate-related compounds, including vanillic acid, coumaric acid, 4-hydroxybenzoic acid, ferulaldehyde and furfural. While all of the biomarkers showed dose-dependent responses to most of the compounds, expression of aaeA and aaeB showed the greatest induction (5-30-fold) for all compounds tested except furfural. Lastly, the marA, inaA and htpG genes all showed higher expression levels when the culture was exposed to spruce hydrolysate samples, demonstrating the potential use of these genes as biomarkers.


Applied Biochemistry and Biotechnology | 2013

Silaffin Peptides as a Novel Signal Enhancer for Gravimetric Biosensors

Dong Hyun Nam; Jeong-O Lee; Byoung-In Sang; Keehoon Won; Yong Hwan Kim

Application of biomimetic silica formation to gravimetric biosensors has been conducted for the first time. As a model system, silaffin peptides fused with green fluorescent protein (GFP) were immobilized on a gold quartz crystal resonator for quartz crystal microbalances using a self-assembled monolayer. When a solution of silicic acid was supplied, silica particles were successfully deposited on the Au surface, resulting in a significant change in resonance frequency (i.e., signal enhancement) with the silaffin–GFP. However, frequency was not altered when bare GFP was used as a control. The novel peptide enhancer is advantageous because it can be readily and quantitatively conjugated with sensing proteins using recombinant DNA technology. As a proof of concept, this study shows that the silaffin domains can be employed as a novel and efficient biomolecular signal enhancer for gravimetric biosensors.

Collaboration


Dive into the Byoung-In Sang's collaboration.

Top Co-Authors

Avatar

Youngsoon Um

Korea Institute of Science and Technology

View shared research outputs
Top Co-Authors

Avatar

Hyunook Kim

Seoul National University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Seil Kim

Korea Research Institute of Standards and Science

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Do Kyung Hwang

Korea Institute of Science and Technology

View shared research outputs
Top Co-Authors

Avatar

Kyoungseon Min

Korea Institute of Science and Technology

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge