Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Okkyoung Choi is active.

Publication


Featured researches published by Okkyoung Choi.


Scientific Reports | 2015

Electricity-driven metabolic shift through direct electron uptake by electroactive heterotroph Clostridium pasteurianum

Okkyoung Choi; Taeyeon Kim; Han Min Woo; Youngsoon Um

Although microbes directly accepting electrons from a cathode have been applied for CO2 reduction to produce multicarbon-compounds, a high electron demand and low product concentration are critical limitations. Alternatively, the utilization of electrons as a co-reducing power during fermentation has been attempted, but there must be exogenous mediators due to the lack of an electroactive heterotroph. Here, we show that Clostridium pasteurianum DSM 525 simultaneously utilizes both cathode and substrate as electron donors through direct electron transfer. In a cathode compartment poised at +0.045 V vs. SHE, a metabolic shift in C. pasteurianum occurs toward NADH-consuming metabolite production such as butanol from glucose (20% shift in terms of NADH consumption) and 1,3-propandiol from glycerol (21% shift in terms of NADH consumption). Notably, a small amount of electron uptake significantly induces NADH-consuming pathways over the stoichiometric contribution of the electrons as reducing equivalents. Our results demonstrate a previously unknown electroactivity and metabolic shift in the biochemical-producing heterotroph, opening up the possibility of efficient and enhanced production of electron-dense metabolites using electricity.


Biotechnology and Bioengineering | 2012

Butyrate production enhancement by Clostridium tyrobutyricum using electron mediators and a cathodic electron donor

Okkyoung Choi; Youngsoon Um; Byoung-In Sang

Electron mediators and electron supply through a cathode were examined to enhance the reducing power for butyrate production by an acidogenic clostridium strain, Clostridium tyrobutyricum BAS 7. Among the tested electron mediators, methyl viologen (MV)‐amended cultures showed an increase of butyrate productivity (1.3 times), final concentration (1.4 times), and yield (1.3 times). The electron flow altered by MV addition from the ferredoxin pool to the NADH pool was shown by one electron model, implying that more available NADH increased butyrate production. In the cathode compartment poised at −400 mV versus the Ag/AgCl electrode, the neutral red (NR)‐amended cultures of Clostridium tyrobutyricum BAS 7 increased butyrate concentration (from 5 to 8.8 g/L) and yield (from 0.33 up to 0.44 g/g) with no acetate production at all. Given that electrically reduced NR (NRred, yellow) by the cathode was re‐oxidized (NRox, red) in the cells on the basis of color change, electron flow from NRred to NAD+ (i.e., NADH generation) induced an increase in butyrate production. This is the first report to show the increase of butyric acid production by electrically driven acidogenesis. These results show that the electron flow altered NADH formation by electron mediators and by the cathodic electron donor, increasing the yield and selectivity of reduced end‐products like butyrate. Biotechnol. Bioeng. 2012; 109: 2494–2502.


Biotechnology for Biofuels | 2016

Extracellular electron transfer from cathode to microbes: application for biofuel production

Okkyoung Choi; Byoung-In Sang

Extracellular electron transfer in microorganisms has been applied for bioelectrochemical synthesis utilizing microbes to catalyze anodic and/or cathodic biochemical reactions. Anodic reactions (electron transfer from microbe to anode) are used for current production and cathodic reactions (electron transfer from cathode to microbe) have recently been applied for current consumption for valuable biochemical production. The extensively studied exoelectrogenic bacteria Shewanella and Geobacter showed that both directions for electron transfer would be possible. It was proposed that gram-positive bacteria, in the absence of cytochrome C, would accept electrons using a cascade of membrane-bound complexes such as membrane-bound Fe-S proteins, oxidoreductase, and periplasmic enzymes. Modification of the cathode with the addition of positive charged species such as chitosan or with an increase of the interfacial area using a porous three-dimensional scaffold electrode led to increased current consumption. The extracellular electron transfer from the cathode to the microbe could catalyze various bioelectrochemical reductions. Electrofermentation used electrons from the cathode as reducing power to produce more reduced compounds such as alcohols than acids, shifting the metabolic pathway. Electrofuel could be generated through artificial photosynthesis using electrical energy instead of solar energy in the process of carbon fixation.


Enzyme and Microbial Technology | 2011

A biosensor based on the self-entrapment of glucose oxidase within biomimetic silica nanoparticles induced by a fusion enzyme

Okkyoung Choi; Byung-Chun Kim; Ji Hye An; Kyoungseon Min; Yong Hwan Kim; Youngsoon Um; Min Kyu Oh; Byoung-In Sang

We constructed a fusion protein (GOx-R5) consisting of R5 (a polypeptide component of silaffin) and glucose oxidase (GOx) that was expressed in Pichia pastoris. Silaffin proteins are responsible for the formation of a silica-based cell matrix of diatoms, and synthetic variants of the R5 protein can perform silicification in vitro[1]. GOx secreted by P. pastoris was self-immobilized (biosilicification) in a pH 5 citric buffer using 0.1M tetramethoxysilane as a silica source. This self-entrapment property of GOx-R5 was used to immobilize GOx on a graphite rod electrode. An electric cell designed as a biosensor was prepared to monitor the glucose concentrations. The electric cell consisted of an Ag/AgCl reference electrode, a platinum counter electrode, and a working electrode modified with poly(neutral red) (PNR)/GOx/Nafion. Glucose oxidase was immobilized by fused protein on poly(neutral red) and covered by Nafion to protect diffusion to the solution. The morphology of the resulting composite PNR/GOx/Nafion material was analyzed by scanning electron microscopy (SEM). This amperometric transducer was characterized electrochemically using cyclic voltammetry and amperometry in the presence of glucose. An image produced by scanning electron microscopy supported the formation of a PNR/GOx complex and the current was increased to 1.58 μA cm(-1) by adding 1mM glucose at an applied potential of -0.5 V. The current was detected by way of PNR-reduced hydrogen peroxide, a product of the glucose oxidation by GOx. The detection limit was 0.67mM (S/N=3). The biosensor containing the graphite rod/PNR/GOx/Nafion detected glucose at various concentrations in mixed samples, which contained interfering molecules. In this study, we report the first expression of R5 fused to glucose oxidase in eukaryotic cells and demonstrate an application of self-entrapped GOx to a glucose biosensor.


Bioresource Technology | 2015

Electrochemical detoxification of phenolic compounds in lignocellulosic hydrolysate for Clostridium fermentation.

Kyung Min Lee; Kyoungseon Min; Okkyoung Choi; Ki Yeon Kim; Han Min Woo; Yunje Kim; Sung Ok Han; Youngsoon Um

Lignocellulosic biomass is being preferred as a feedstock in the biorefinery, but lignocellulosic hydrolysate usually contains inhibitors against microbial fermentation. Among these inhibitors, phenolics are highly toxic to butyric acid-producing and butanol-producing Clostridium even at a low concentration. Herein, we developed an electrochemical polymerization method to detoxify phenolic compounds in lignocellulosic hydrolysate for efficient Clostridium fermentation. After the electrochemical detoxification for 10h, 78%, 77%, 82%, and 94% of p-coumaric acid, ferulic acid, vanillin, and syringaldehyde were removed, respectively. Furthermore, 71% of total phenolics in rice straw hydrolysate were removed without any sugar-loss. Whereas the cell growth and metabolite production of Clostridium tyrobutyricum and Clostridium beijerinckii were completely inhibited in un-detoxified hydrolysate, those in detoxifying rice straw hydrolysate were recovered to 70-100% of the control cultures. The electrochemical detoxification method described herein provides an efficient strategy for producing butanol and butyric acid through Clostridium fermentation with lignocellulosic hydrolysate.


PLOS ONE | 2015

Analysis of the Microbial Community in an Acidic Hollow-Fiber Membrane Biofilm Reactor (Hf-MBfR) Used for the Biological Conversion of Carbon Dioxide to Methane

Hyun Chul Shin; Dong-Hun Ju; Byoung Seung Jeon; Okkyoung Choi; Hyun Wook Kim; Youngsoon Um; Dong-Hoon Lee; Byoung-In Sang

Hydrogenotrophic methanogens can use gaseous substrates, such as H2 and CO2, in CH4 production. H2 gas is used to reduce CO2. We have successfully operated a hollow-fiber membrane biofilm reactor (Hf-MBfR) for stable and continuous CH4 production from CO2 and H2. CO2 and H2 were diffused into the culture medium through the membrane without bubble formation in the Hf-MBfR, which was operated at pH 4.5–5.5 over 70 days. Focusing on the presence of hydrogenotrophic methanogens, we analyzed the structure of the microbial community in the reactor. Denaturing gradient gel electrophoresis (DGGE) was conducted with bacterial and archaeal 16S rDNA primers. Real-time qPCR was used to track changes in the community composition of methanogens over the course of operation. Finally, the microbial community and its diversity at the time of maximum CH4 production were analyzed by pyrosequencing methods. Genus Methanobacterium, related to hydrogenotrophic methanogens, dominated the microbial community, but acetate consumption by bacteria, such as unclassified Clostridium sp., restricted the development of acetoclastic methanogens in the acidic CH4 production process. The results show that acidic operation of a CH4 production reactor without any pH adjustment inhibited acetogenic growth and enriched the hydrogenotrophic methanogens, decreasing the growth of acetoclastic methanogens.


Journal of Microbiology and Biotechnology | 2015

Analysis of Microbial Communities in Biofilms from CSTR-Type Hollow Fiber Membrane Biofilm Reactors for Autotrophic Nitrification and Hydrogenotrophic Denitrification.

Jun-Sung Shin; Byung-Hyuk Kim; Okkyoung Choi; H.J. Kim; Byoung-In Sang

Two hollow fiber membrane biofilm reactors (HF-MBfRs) were operated for autotrophic nitrification and hydrogenotrophic denitrification for over 300 days. Oxygen and hydrogen were supplied through the hollow fiber membrane for nitrification and denitrification, respectively. During the period, the nitrogen was removed with the efficiency of 82-97% for ammonium and 87-97% for nitrate and with the nitrogen removal load of 0.09-0.26 kg NH4(+)-N/m(3)/d and 0.10-0.21 kg NO3(-)-N/m(3)/d, depending on hydraulic retention time variation by the two HF-MBfRs for autotrophic nitrification and hydrogenotrophic denitrification, respectively. Biofilms were collected from diverse topological positions in the reactors, each at different nitrogen loading rates, and the microbial communities were analyzed with partial 16S rRNA gene sequences in denaturing gradient gel electrophoresis (DGGE). Detected DGGE band sequences in the reactors were correlated with nitrification or denitrification. The profile of the DGGE bands depended on the NH4(+) or NO3(-) loading rate, but it was hard to find a major strain affecting the nitrogen removal efficiency. Nitrospira-related phylum was detected in all biofilm samples from the nitrification reactors. Paracoccus sp. and Aquaspirillum sp., which are an autohydrogenotrophic bacterium and an oligotrophic denitrifier, respectively, were observed in the denitrification reactors. The distribution of microbial communities was relatively stable at different nitrogen loading rates, and DGGE analysis based on 16S rRNA (341f /534r) could successfully detect nitrate-oxidizing and hydrogen-oxidizing bacteria but not ammonium-oxidizing bacteria in the HF-MBfRs.


Korean Journal of Chemical Engineering | 2018

Evaluation of relationship between biogas production and microbial communities in anaerobic co-digestion

Dan Li; Min Soo Kim; Hyunjin Kim; Okkyoung Choi; Byoung-In Sang; Pen-Chi Chiang; Hyunook Kim

Anaerobic co-digestion (ACD) has been used to treat various organic wastes because nutrient balance in the feed can be improved by mixing different organics. Until now, the correlation between characteristics of feedstocks and biogas production by ACD has been studied mainly in terms of biochemical methane potential. It has been rarely tried to understand the co-digestion process in terms of microbial community development. This study aimed to evaluate the performance of batch anaerobic digestion (AD) reactors fed with activated sludge (AS), swine slurry (SS) and food waste (FW) individually or in a mixture of the three wastes (FW: SS : AS=1 : 3 : 2). The AD reactors fed with the mixture showed better performance than those fed with a single substrate. Microbial communities of the batch AD reactors fed with a single substrate or the mixture were analyzed and the result was related to the performance of the AD reactors.


Korean Journal of Chemical Engineering | 2017

Effects of supplement additives on anaerobic biogas production

Min Soo Kim; Dan Li; Okkyoung Choi; Byoung-In Sang; Pen-Chi Chiang; Hyunook Kim

Anaerobic digestion (AD) converts biomass to biogas. However, its performance is often affected by the nutrient condition of AD substrate. In this study, a few substrate supplements were selected to promote the biogas production; MgO, FeCl3, and cellulase were selected based on the result from elemental analyses of the biomass. The potential impact of the additives on AD process was evaluated by performing a series of biochemical methane potential (BMP) tests. BMP reactors with the substrate with one of the selected additives (i.e., MgO of 380 mg Mg L−1, FeCl3 of 88 mg Fe L−1 or cellulase of 25 mg L−1) exhibited higher microbial activity; 5–15% more biogas production was observed, compared to the blank. Microbial community analysis showed that different additives resulted in proliferation of different microbial species. Therefore, it was decided to add the mixture of the three additives to the biomass. Addition of the mixed additive resulted in 22% more gas production.


Process Biochemistry | 2014

A pilot scale two-stage anaerobic digester treating food waste leachate (FWL): Performance and microbial structure analysis using pyrosequencing

Seil Kim; Jae-Sang Bae; Okkyoung Choi; Dong-Hun Ju; Jungmin Lee; Hyun-Je Sung; Seong-Bum Park; Byoung-In Sang; Youngsoon Um

Collaboration


Dive into the Okkyoung Choi's collaboration.

Top Co-Authors

Avatar

Youngsoon Um

Korea Institute of Science and Technology

View shared research outputs
Top Co-Authors

Avatar

Byoung-In Sang

Korea Institute of Science and Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Han Min Woo

Sungkyunkwan University

View shared research outputs
Top Co-Authors

Avatar

Ki-Yeon Kim

Korea Institute of Science and Technology

View shared research outputs
Top Co-Authors

Avatar

Yunje Kim

Korea Institute of Science and Technology

View shared research outputs
Top Co-Authors

Avatar

Hyunook Kim

Seoul National University

View shared research outputs
Top Co-Authors

Avatar

Ki Yeon Kim

Korea Institute of Science and Technology

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge