Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Byron Gallis is active.

Publication


Featured researches published by Byron Gallis.


Arteriosclerosis, Thrombosis, and Vascular Biology | 2005

Free Fatty Acid Impairment of Nitric Oxide Production in Endothelial Cells Is Mediated by IKKβ

Francis Kim; Kelly A. Tysseling; Julie Rice; Matilda Pham; Lutfiyah Haji; Byron Gallis; Arnold S. Baas; Pathmaja Paramsothy; Cecilia M. Giachelli; Marshall A. Corson; Elaine W. Raines

Objective—Free fatty acids (FFA) are commonly elevated in diabetes and obesity and have been shown to impair nitric oxide (NO) production by endothelial cells. However, the signaling pathways responsible for FFA impairment of NO production in endothelial cells have not been characterized. Insulin receptor substrate-1 (IRS-1) regulation is critical for activation of endothelial nitric oxide synthase (eNOS) in response to stimulation by insulin or fluid shear stress. Methods and Results—We demonstrate that insulin-mediated tyrosine phosphorylation of IRS-1 and serine phosphorylation of Akt, eNOS, and NO production are significantly inhibited by treatment of bovine aortic endothelial cells with 100 &mgr;mol/L FFA composed of palmitic acid for 3 hours before stimulation with 100 nM insulin. This FFA preparation also increases, in a dose-dependent manner, IKKβ activity, which regulates activation of NF- &kgr;B, a transcriptional factor associated with inflammation. Similarly, elevation of other common FFA such as oleic and linoleic acid also induce IKKβ activation and inhibit insulin-mediated eNOS activation. Overexpression of a kinase inactive form of IKKβ blocks the ability of FFA to inhibit insulin-dependent NO production, whereas overexpression of wild-type IKKβ recapitulates the effect of FFA on insulin-dependent NO production. Conclusions—Elevated levels of common FFA found in human serum activate IKKβ in endothelial cells leading to reduced NO production, and thus may serve to link pathways involved in inflammation and endothelial dysfunction.


Journal of Biological Chemistry | 1999

p90(RSK) is a serum-stimulated Na+/H+ exchanger isoform-1 kinase. Regulatory phosphorylation of serine 703 of Na+/H+ exchanger isoform-1

Eiichi Takahashi; Jun Ichi Abe; Byron Gallis; Ruedi Aebersold; Denise J. Spring; Edwin G. Krebs; Bradford C. Berk

The Na+/H+exchanger isoform-1 (NHE-1) is the key member of a family of exchangers that regulates intracellular pH and cell volume. Activation of NHE-1 by growth factors is rapid, correlates with increased NHE-1 phosphorylation and cell alkalinization, and plays a role in cell cycle progression. By two-dimensional tryptic peptide mapping of immunoprecipitated NHE-1, we identify serine 703 as the major serum-stimulated amino acid. Mutation of serine 703 to alanine had no effect on acid-stimulated Na+/H+ exchange but completely prevented the growth factor-mediated increase in NHE-1 affinity for H+. In addition, we show that p90 ribosomal S6 kinase (p90RSK) is a key NHE-1 kinase since p90RSK phosphorylates NHE-1 serine 703 stoichiometricallyin vitro, and transfection with kinase-inactive p90RSK inhibits serum-induced phosphorylation of NHE-1 serine 703 in transfected 293 cells. These findings establish p90RSK as a serum-stimulated NHE-1 kinase and a mediator of increased Na+/H+ exchange in vivo.


Genome Biology | 2007

Comparison of Francisella tularensis genomes reveals evolutionary events associated with the emergence of human pathogenic strains

Laurence Rohmer; Christine Fong; Simone Abmayr; Michael Wasnick; Theodore Larson Freeman; Matthew Radey; Tina Guina; Kerstin Svensson; Hillary S. Hayden; Michael A. Jacobs; Larry A. Gallagher; Colin Manoil; Robert K. Ernst; Becky Drees; Danielle Buckley; Eric Haugen; Donald Bovee; Yang Zhou; Jean Chang; Ruth Levy; Regina Lim; Will Gillett; Don Guenthener; Allison Kang; Scott A. Shaffer; Greg Taylor; Jinzhi Chen; Byron Gallis; David A. D'Argenio; Mats Forsman

BackgroundFrancisella tularensis subspecies tularensis and holarctica are pathogenic to humans, whereas the two other subspecies, novicida and mediasiatica, rarely cause disease. To uncover the factors that allow subspecies tularensis and holarctica to be pathogenic to humans, we compared their genome sequences with the genome sequence of Francisella tularensis subspecies novicida U112, which is nonpathogenic to humans.ResultsComparison of the genomes of human pathogenic Francisella strains with the genome of U112 identifies genes specific to the human pathogenic strains and reveals pseudogenes that previously were unidentified. In addition, this analysis provides a coarse chronology of the evolutionary events that took place during the emergence of the human pathogenic strains. Genomic rearrangements at the level of insertion sequences (IS elements), point mutations, and small indels took place in the human pathogenic strains during and after differentiation from the nonpathogenic strain, resulting in gene inactivation.ConclusionThe chronology of events suggests a substantial role for genetic drift in the formation of pseudogenes in Francisella genomes. Mutations that occurred early in the evolution, however, might have been fixed in the population either because of evolutionary bottlenecks or because they were pathoadaptive (beneficial in the context of infection). Because the structure of Francisella genomes is similar to that of the genomes of other emerging or highly pathogenic bacteria, this evolutionary scenario may be shared by pathogens from other species.


Journal of Histochemistry and Cytochemistry | 2003

Immunocytochemical Detection of Phosphatidylinositol 3-kinase Activation by Insulin and Leptin

Kevin D. Niswender; Byron Gallis; James E. Blevins; Marshall A. Corson; Michael W. Schwartz; Denis G. Baskin

Intracellular signaling mediated by phosphatidylinositol 3-kinase (PI3K) is important for a number of cellular processes and is stimulated by a variety of hormones, including insulin and leptin. A histochemical method for assessment of PI3K signaling would be an important advance in identifying specific cells in histologically complex organs that are regulated by growth factors and peptide hormones. However, current methods for detecting PI3K activity require either homogenization of the tissue or cells or the ability to transfect probes that bind to phosphatidylinositol 3,4,5 trisphosphate (PIP3), the reaction product of PI3K catalysis. Here we report the validation of an immunocytochemical method to detect changes in PI3K activity, using a recently developed monoclonal antibody to PIP3, in paraformaldehyde-fixed bovine aortic endothelial cells (BAECs) in culture and in hepatocytes of intact rat liver. Treatment with either insulin or leptin increased BAEC PIP3 immunoreactivity, and these effects were blocked by pretreatment with PI3K inhibitors. Furthermore, infusion of insulin into the hepatic portal vein of fasted rats caused an increase of PIP3 immunostaining in hepatocytes that was associated with increased serine phosphorylation of the downstream signaling molecule protein kinase B/Akt (PKB/Akt). We conclude that immunocytochemical PIP3 staining can detect changes in PI3K activation induced by insulin and leptin in cell culture and intact liver.


Cancer Letters | 2009

Transferrin receptor-dependent cytotoxicity of artemisinin–transferrin conjugates on prostate cancer cells and induction of apoptosis

Ikuhiko Nakase; Byron Gallis; Tomoka Takatani-Nakase; Steve Oh; Eric Lacoste; Narendra P. Singh; David R. Goodlett; Seigo Tanaka; Shiroh Futaki; Henry Lai; Tomikazu Sasaki

Artemisinin, a natural product isolated from Artemisia annua, contains an endoperoxide group that can be activated by intracellular iron to generate toxic radical species. Cancer cells over-express transferrin receptors (TfR) for iron uptake while most normal cells express nearly undetectable levels of TfR. We prepared a series of artemisinin-tagged transferrins (ART-Tf) where different numbers of artemisinin units are attached to the N-glycoside chains of transferrin (Tf). The Tf bearing approximately 16 artemisinins retains the functionality of both Tf and artemisinin. Reduction of TfRs by TfR siRNA transfection significantly impaired the ability of ART-Tf, but not dihydroartemisinin, to kill cells. We also demonstrate that the ART-Tf conjugate kills the prostate carcinoma cell line DU 145 by the mitochondrial pathway of apoptosis.


Journal of Bacteriology | 2007

MglA Regulates Francisella tularensis subsp. novicida (Francisella novicida) Response to Starvation and Oxidative Stress

Tina Guina; Dragan Radulovic; Arya J. Bahrami; Diana L. Bolton; Laurence Rohmer; Kendan A. Jones-Isaac; Jinzy Chen; Larry A. Gallagher; Byron Gallis; Soyoung Ryu; Greg Taylor; M. Brittnacher; Colin Manoil; David R. Goodlett

MglA is a transcriptional regulator of genes that contribute to the virulence of Francisella tularensis, a highly infectious pathogen and the causative agent of tularemia. This study used a label-free shotgun proteomics method to determine the F. tularensis subsp. novicida (F. novicida) proteins that are regulated by MglA. The differences in relative protein amounts between wild-type F. novicida and the mglA mutant were derived directly from the average peptide precursor ion intensity values measured with the mass spectrometer by using a suite of mathematical algorithms. Among the proteins whose relative amounts changed in an F. novicida mglA mutant were homologs of oxidative and general stress response proteins. The F. novicida mglA mutant exhibited decreased survival during stationary-phase growth and increased susceptibility to killing by superoxide generated by the redox-cycling agent paraquat. The F. novicida mglA mutant also showed increased survival upon exposure to hydrogen peroxide, likely due to increased amounts of the catalase KatG. Our results suggested that MglA coordinates the stress response of F. tularensis and is likely essential for bacterial survival in harsh environments.


Anti-Cancer Drugs | 2010

Effect of artemisinin derivatives on apoptosis and cell cycle in prostate cancer cells

Colm Morrissey; Byron Gallis; Jeffrey W. Solazzi; Byung Ju Kim; Roman Gulati; Funda Vakar-Lopez; David R. Goodlett; Robert L. Vessella; Tomikazu Sasaki

Artemisinin is a plant-derived anti-malarial drug that has relatively low toxicity in humans and is activated by heme and/or intracellular iron leading to intracellular free radical formation. Interestingly, artemisinin has displayed anti-cancer activity, with artemisinin dimers being more potent than monomeric artemisinin. Intracellular iron uptake is regulated by the transferrin receptor (TfR), and the activity of artemisinin depends on the availability of iron. We examined the level of TfR in prostate cancer (PCa) tumor cells, synthesized two new artemisinin dimers, and evaluated the effect of dihydroartemisinin and artemisinin dimers, ON-2Py and 2Py, on proliferation and apoptosis in PCa cells. TfR was expressed in the majority of PCa bone and soft tissue metastases, all 24 LuCaP PCa xenografts, and PCa cell lines. After treatment with dihydroartemisinin, ON-2Py, or 2Py all PCa cell lines displayed dose-dependent decrease in cell number. 2Py was most effective in decreasing cell number. An increase in apoptotic events and growth arrest was observed in the C4-2 and LNCaP cell lines. Growth arrest was observed in PC-3 cells, but no significant change was observed in DU 145 cells. Treatment with 2Py resulted in a loss of the anti-apoptotic protein survivin in all four cell lines. 2Py treatment also decreased androgen receptor and prostate-specific antigen expression in C4-2 and LNCaP cells, with a concomitant loss of cell cycle regulatory proteins cyclin D1 and c-Myc. This study shows the potential use of artemisinin derivatives as therapeutic candidates for PCa and warrants the initiation of preclinical studies.


Cancer Informatics | 2008

Comparison of a Label-Free Quantitative Proteomic Method Based on Peptide Ion Current Area to the Isotope Coded Affinity Tag Method

Soyoung Ryu; Byron Gallis; Young Ah Goo; Scott A. Shaffer; Dragan Radulovic; David R. Goodlett

Recently, several research groups have published methods for the determination of proteomic expression profiling by mass spectrometry without the use of exogenously added stable isotopes or stable isotope dilution theory. These so-called label-free, methods have the advantage of allowing data on each sample to be acquired independently from all other samples to which they can later be compared in silico for the purpose of measuring changes in protein expression between various biological states. We developed label free software based on direct measurement of peptide ion current area (PICA) and compared it to two other methods, a simpler label free method known as spectral counting and the isotope coded affinity tag (ICAT) method. Data analysis by these methods of a standard mixture containing proteins of known, but varying, concentrations showed that they performed similarly with a mean squared error of 0.09. Additionally, complex bacterial protein mixtures spiked with known concentrations of standard proteins were analyzed using the PICA label-free method. These results indicated that the PICA method detected all levels of standard spiked proteins at the 90% confidence level in this complex biological sample. This finding confirms that label-free methods, based on direct measurement of the area under a single ion current trace, performed as well as the standard ICAT method. Given the fact that the label-free methods provide ease in experimental design well beyond pair-wise comparison, label-free methods such as our PICA method are well suited for proteomic expression profiling of large numbers of samples as is needed in clinical analysis.


Molecular Microbiology | 2007

Identification and type III‐dependent secretion of the Yersinia pestis insecticidal‐like proteins

Inessa Gendlina; Kiara G. Held; Sara Schesser Bartra; Byron Gallis; Catalin E. Doneanu; David R. Goodlett; Gregory V. Plano; Carleen M. Collins

Plague, or the Black Death, is a zoonotic disease that is spread from mammal to mammal by fleas. This mode of transmission demands that the causative agent of this disease, Yersinia pestis, is able to survive and multiply in both mammals and insects. In recent years the complete genome sequence of a number of Y. pestis strains have been determined. This sequence information indicates that Y. pestis contains a cluster of genes with homology to insecticidal toxin encoding genes of the insect pathogen Photorhabdus luminescens. Here we demonstrate that Y. pestis KIM strains produced the encoded proteins. Production of the locus‐encoded proteins was dependent on a gene (yitR) encoding a member of the LysR family of transcriptional activators. Evidence suggests the proteins are type III secretion substrates. N terminal amino acids (100 to 367) of each protein fused to an epitope tag were secreted by the virulence plasmid type III secretion type. A fusion protein comprised of the N‐terminus of YipB and the enzymatic active component of Bordetella pertussis adenylate cyclase (Cya) was translocated into both mammalian and insect cells. In conclusion, a new class of Y. pestis type III secreted and translocated proteins has been identified. We hypothesize that these proteins function to promote transmission of and infection by Y. pestis.


PLOS ONE | 2013

pH-responsive artemisinin derivatives and lipid nanoparticle formulations inhibit growth of breast cancer cells in vitro and induce down-regulation of HER family members.

Yitong J. Zhang; Byron Gallis; Michio Taya; Shusheng Wang; Rodney J. Y. Ho; Tomikazu Sasaki

Artemisinin (ART) dimers show potent anti-proliferative activities against breast cancer cells. To facilitate their clinical development, novel pH-responsive artemisinin dimers were synthesized for liposomal nanoparticle formulations. A new ART dimer was designed to become increasingly water-soluble as pH declines. The new artemisinin dimer piperazine derivatives (ADPs) remained tightly associated with liposomal nanoparticles (NPs) at neutral pH but were efficiently released at acidic pHs that are known to exist within solid tumors and organelles such as endosomes and lysosomes. ADPs incorporated into nanoparticles down regulated the anti-apoptotic protein, survivin, and cyclin D1 when incubated at low concentrations with breast cancer cell lines. We demonstrate for the first time, for any ART derivative, that ADP NPs can down regulate the oncogenic protein HER2, and its counterpart, HER3 in a HER2+ cell line. We also show that the wild type epidermal growth factor receptor (EGFR or HER1) declines in a triple negative breast cancer (TNBC) cell line in response to ADP NPs. The declines in these proteins are achieved at concentrations of NP109 at or below 1 µM. Furthermore, the new artemisinin derivatives showed improved cell-proliferation inhibition effects compared to known dimer derivatives.

Collaboration


Dive into the Byron Gallis's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Scott A. Shaffer

University of Massachusetts Medical School

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Tina Guina

University of Washington

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Greg Taylor

University of Washington

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge