Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Byung-Kook Ham is active.

Publication


Featured researches published by Byung-Kook Ham.


The Plant Cell | 2001

Overexpression of the Tobacco Tsi1 Gene Encoding an EREBP/AP2-Type Transcription Factor Enhances Resistance against Pathogen Attack and Osmotic Stress in Tobacco

Jeong Mee Park; Chang-Jin Park; Suk-Bae Lee; Byung-Kook Ham; Ryoung Shin; Kyung Hee Paek

Using mRNA differential display analysis, we isolated a salt-induced transcript that showed a significant sequence homology with an EREBP/AP2 DNA binding motif from oilseed rape plants. With this cDNA fragment as a probe, cDNA clone Tsi1 (for Tobacco stress-induced gene1) was isolated from a tobacco cDNA library. RNA gel blot analysis indicated that transcripts homologous with Tsi1 were induced not only in NaCl-treated leaves but also in leaves treated with ethephon or salicylic acid. Transient expression analysis using a Tsi1::smGFP fusion gene in BY-2 cells indicated that the Tsi1 protein was targeted to the nucleus. Fusion protein of Tsi1 with GAL4 DNA binding domain strongly activated transcription in yeast, and the transactivating activity was localized to the 13 C-terminal amino acids of Tsi1. Electrophoretic mobility shift assays revealed that Tsi1 could bind specifically to the GCC and the DRE/CRT sequences, although the binding activity to the former was stronger than that to the latter. Furthermore, Agrobacterium-mediated transient expression and transgenic plants expressing Tsi1 demonstrated that overexpression of the Tsi1 gene induced expression of several pathogenesis-related genes under normal conditions, resulting in improved tolerance to salt and pathogens. These results suggest that Tsi1 might be involved as a positive trans-acting factor in two separate signal transduction pathways under abiotic and biotic stress.


Nature Genetics | 2013

The draft genome of watermelon (Citrullus lanatus) and resequencing of 20 diverse accessions

Shaogui Guo; Jianguo Zhang; Honghe Sun; Jérôme Salse; William J. Lucas; Haiying Zhang; Yi Zheng; Linyong Mao; Yi Ren; Zhiwen Wang; Jiumeng Min; Xiaosen Guo; Florent Murat; Byung-Kook Ham; Zhaoliang Zhang; Shan Gao; Mingyun Huang; Yimin Xu; Silin Zhong; Aureliano Bombarely; Lukas A. Mueller; Hong Zhao; Hongju He; Zhang Y; Zhonghua Zhang; Sanwen Huang; Tao Tan; Erli Pang; Kui Lin; Qun Hu

Watermelon, Citrullus lanatus, is an important cucurbit crop grown throughout the world. Here we report a high-quality draft genome sequence of the east Asia watermelon cultivar 97103 (2n = 2× = 22) containing 23,440 predicted protein-coding genes. Comparative genomics analysis provided an evolutionary scenario for the origin of the 11 watermelon chromosomes derived from a 7-chromosome paleohexaploid eudicot ancestor. Resequencing of 20 watermelon accessions representing three different C. lanatus subspecies produced numerous haplotypes and identified the extent of genetic diversity and population structure of watermelon germplasm. Genomic regions that were preferentially selected during domestication were identified. Many disease-resistance genes were also found to be lost during domestication. In addition, integrative genomic and transcriptomic analyses yielded important insights into aspects of phloem-based vascular signaling in common between watermelon and cucumber and identified genes crucial to valuable fruit-quality traits, including sugar accumulation and citrulline metabolism.


Trends in Cell Biology | 2009

Plasmodesmata – bridging the gap between neighboring plant cells

William J. Lucas; Byung-Kook Ham; Jae-Yean Kim

Land plants have developed highly sophisticated intercellular channels called plasmodesmata (PD) that mediate the cell-to-cell trafficking of signaling molecules, including non-cell autonomous proteins (NCAPs) and RNAs. Until recently, the biological significance of this position-dependent intercellular signaling system was underestimated, as only a limited number of endogenous NCAPs had been discovered. However, identification of an ever-increasing population of NCAPs suggests that the PD communication pathway is involved in diverse biological processes, ranging from development to pathogen defense. The identification of components involved in plasmodesmal structure and associated signaling molecules is now yielding novel insights into the evolution and function of PD in mediating the trafficking of non-cell-autonomous information macromolecules. Important future challenges are to build a detailed model for the plasmodesmal supramolecular complex and to further elucidate the molecular and cellular aspects of this novel plant cell-to-cell communication pathway.


The Plant Cell | 2009

A polypyrimidine tract binding protein, pumpkin RBP50, forms the basis of a phloem-mobile ribonucleoprotein complex.

Byung-Kook Ham; Jeri L. Brandom; Beatriz Xoconostle-Cázares; Vanessa Ringgold; Tony James Lough; William J. Lucas

RNA binding proteins (RBPs) are integral components of ribonucleoprotein (RNP) complexes and play a central role in RNA processing. In plants, some RBPs function in a non-cell-autonomous manner. The angiosperm phloem translocation stream contains a unique population of RBPs, but little is known regarding the nature of the proteins and mRNA species that constitute phloem-mobile RNP complexes. Here, we identified and characterized a 50-kD pumpkin (Cucurbita maxima cv Big Max) phloem RNA binding protein (RBP50) that is evolutionarily related to animal polypyrimidine tract binding proteins. In situ hybridization studies indicated a high level of RBP50 transcripts in companion cells, while immunolocalization experiments detected RBP50 in both companion cells and sieve elements. A comparison of the levels of RBP50 present in vascular bundles and phloem sap indicated that this protein is highly enriched in the phloem sap. Heterografting experiments confirmed that RBP50 is translocated from source to sink tissues. Collectively, these findings established that RBP50 functions as a non-cell-autonomous RBP. Protein overlay, coimmunoprecipitation, and cross-linking experiments identified the phloem proteins and mRNA species that constitute RBP50-based RNP complexes. Gel mobility-shift assays demonstrated that specificity, with respect to the bound mRNA, is established by the polypyrimidine tract binding motifs within such transcripts. We present a model for RBP50-based RNP complexes within the pumpkin phloem translocation stream.


The Plant Cell | 2007

Reciprocal Phosphorylation and Glycosylation Recognition Motifs Control NCAPP1 Interaction with Pumpkin Phloem Proteins and Their Cell-to-Cell Movement

Ken-ichiro Taoka; Byung-Kook Ham; Beatriz Xoconostle-Cázares; Maria R. Rojas; William J. Lucas

In plants, cell-to-cell trafficking of non-cell-autonomous proteins (NCAPs) involves protein–protein interactions, and a role for posttranslational modification has been implicated. In this study, proteins contained in pumpkin (Cucurbita maxima cv Big Max) phloem sap were used as a source of NCAPs to further explore the molecular basis for selective NCAP trafficking. Protein overlay assays and coimmunoprecipitation experiments established that phosphorylation and glycosylation, on both Nicotiana tabacum NON-CELL-AUTONOMOUS PATHWAY PROTEIN1 (Nt-NCAPP1) and the phloem NCAPs, are essential for their interaction. Detailed molecular analysis of a representative phloem NCAP, Cm-PP16-1, identified the specific residues on which glycosylation and phosphorylation must occur for effective binding to NCAPP1. Microinjection studies confirmed that posttranslational modification on these residues is essential for cell-to-cell movement of Cm-PP16-1. Lastly, a glutathione S-transferase (GST)–Cm-PP16-1 fusion protein system was employed to test whether the peptide region spanning these residues was required for cell-to-cell movement. These studies established that a 36–amino acid peptide was sufficient to impart cell-to-cell movement capacity to GST, a normally cell-autonomous protein. These findings are consistent with the hypothesis that a phosphorylation-glycosylation recognition motif functions to control the binding of a specific subset of phloem NCAPs to NCAPP1 and their subsequent transport through plasmodesmata.


The Plant Cell | 2012

Overexpression of Arabidopsis Plasmodesmata Germin-Like Proteins Disrupts Root Growth and Development

Byung-Kook Ham; Gang Li; Byung-Ho Kang; Fanchang Zeng; William J. Lucas

Plant cells communicate by movement of signaling agents through cytoplasmic bridges, termed plasmodesmata (PD). In this study, we characterize two members of the Germin-like protein family that are located within PD. PDGLP1/2 overexpression phenotypes had a reduction in primary root meristem size, likely due to their inability to form functional PD complexes. In plants, a population of non-cell-autonomous proteins (NCAPs), including numerous transcription factors, move cell to cell through plasmodesmata (PD). In many cases, the intercellular trafficking of these NCAPs is regulated by their interaction with specific PD components. To gain further insight into the functions of this NCAP pathway, coimmunoprecipitation experiments were performed on a tobacco (Nicotiana tabacum) plasmodesmal-enriched cell wall protein preparation using as bait the NCAP, pumpkin (Cucurbita maxima) PHLOEM PROTEIN16 (Cm-PP16). A Cm-PP16 interaction partner, Nt-PLASMODESMAL GERMIN-LIKE PROTEIN1 (Nt-PDGLP1) was identified and shown to be a PD-located component. Arabidopsis thaliana putative orthologs, PDGLP1 and PDGLP2, were identified; expression studies indicated that, postgermination, these proteins were preferentially expressed in the root system. The PDGLP1 signal peptide was shown to function in localization to the PD by a novel mechanism involving the endoplasmic reticulum-Golgi secretory pathway. Overexpression of various tagged versions altered root meristem function, leading to reduced primary root but enhanced lateral root growth. This effect on root growth was corrected with an inability of these chimeric proteins to form stable PD-localized complexes. PDGLP1 and PDGLP2 appear to be involved in regulating primary root growth by controlling phloem-mediated allocation of resources between the primary and lateral root meristems.


Plant Journal | 2010

Pumpkin eIF5A isoforms interact with components of the translational machinery in the cucurbit sieve tube system

Yi Ma; Eriko Miura; Byung-Kook Ham; Hao-Wen Cheng; Young Jin Lee; William J. Lucas

In yeast, eIF5A, in combination with eEF2, functions at the translation step, during the protein elongation cycle. This result is of significance with respect to functioning of the enucleate sieve tube system, as eIF5A was recently detected in Cucurbita maxima (pumpkin) phloem sap. In the present study, we further characterized four CmeIF5A isoforms, encoding three proteins, all of which were present in the phloem sap. Although hypusination of CmeIF5A was not necessary for entry into the sieve elements, this unique post-translational modification was necessary for RNA binding. The two enzymes required for hypusination were detected in pumpkin phloem sap, where presumably this modification takes place. A combination of gel-filtration chromatography and protein overlay assays demonstrated that, as in yeast, CmeIF5A interacts with phloem proteins, like eEF2, known to be involved in protein synthesis. These findings are discussed in terms of a potential role for eIF5A in regulating protein synthesis within the enucleate sieve tube system of the angiosperms.


Journal of Experimental Botany | 2014

The angiosperm phloem sieve tube system: a role in mediating traits important to modern agriculture

Byung-Kook Ham; William J. Lucas

The plant vascular system serves a vital function by distributing water, nutrients and hormones essential for growth and development to the various organs of the plant. In this review, attention is focused on the role played by the phloem as the conduit for delivery of both photosynthate and information macromolecules, especially from the context of its mediation in traits that are important to modern agriculture. Resource allocation of sugars and amino acids, by the phloem, to specific sink tissues is of importance to crop yield and global food security. Current findings are discussed in the context of a hierarchical control network that operates to integrate resource allocation to competing sinks. The role of plasmodesmata that connect companion cells to neighbouring sieve elements and phloem parenchyma cells is evaluated in terms of their function as valves, connecting the sieve tube pressure manifold system to the various plant tissues. Recent studies have also revealed that plasmodesmata and the phloem sieve tube system function cooperatively to mediate the long-distance delivery of proteins and a diverse array of RNA species. Delivery of these information macromolecules is discussed in terms of their roles in control over the vegetative-to-floral transition, tuberization in potato, stress-related signalling involving miRNAs, and genetic reprogramming through the delivery of 24-nucleotide small RNAs that function in transcriptional gene silencing in recipient sink organs. Finally, we discuss important future research areas that could contribute to developing agricultural crops with engineered performance characteristics for enhance yield potential.


Annual Review of Plant Biology | 2017

Phloem-Mobile RNAs as Systemic Signaling Agents

Byung-Kook Ham; William J. Lucas

The plant vascular system plays a central role in coordinating physiological and developmental events through delivery of both essential nutrients and long-distance signaling agents. The enucleate phloem sieve tube system of the angiosperms contains a broad spectrum of RNA species. Grafting and transcriptomics studies have indicated that several thousand mRNAs move long distances from source organs to meristematic sink tissues. Ribonucleoprotein complexes play a pivotal role as stable RNA-delivery systems for systemic translocation of cargo RNA. In this review, we assess recent progress in the characterization of phloem and plasmodesmal transport as an integrated local and systemic communication network. We discuss the roles of phloem-mobile small RNAs in epigenetic events, including meristem development and genome stability, and the delivery of mRNAs to specific tissues in response to environmental inputs. A large body of evidence now supports a model in which phloem-mobile RNAs act as critical components of gene regulatory networks involved in plant growth, defense, and crop yield at the whole-plant level.


Nature plants | 2016

Vascular-mediated signalling involved in early phosphate stress response in plants.

Zhaoliang Zhang; Yi Zheng; Byung-Kook Ham; Jieyu Chen; Akiko Yoshida; Leon V. Kochian; Zhangjun Fei; William J. Lucas

Depletion of finite global rock phosphate (Pi) reserves will impose major limitations on future agricultural productivity and food security. Hence, modern breeding programmes seek to develop Pi-efficient crops with sustainable yields under reduced Pi fertilizer inputs. In this regard, although the long-term responses of plants to Pi stress are well documented, the early signalling events have yet to be elucidated. Here, we show plant tissue-specific responses to early Pi stress at the transcription level and a predominant role of the plant vascular system in this process. Specifically, imposition of Pi stress induces rapid and major changes in the mRNA population in the phloem translocation stream, and grafting studies have revealed that many hundreds of phloem-mobile mRNAs are delivered to specific sink tissues. We propose that the shoot vascular system acts as the site of root-derived Pi stress perception, and the phloem serves to deliver a cascade of signals to various sinks, presumably to coordinate whole-plant Pi homeostasis.

Collaboration


Dive into the Byung-Kook Ham's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Gang Li

University of Minnesota

View shared research outputs
Top Co-Authors

Avatar

Maria R. Rojas

University of California

View shared research outputs
Top Co-Authors

Avatar

Yi Zheng

Boyce Thompson Institute for Plant Research

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jieyu Chen

University of Minnesota

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge