Tony James Lough
University of California, Davis
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Tony James Lough.
The Plant Cell | 2004
Byung-Chun Yoo; Friedrich Kragler; Erika Varkonyi-Gasic; Valerie Haywood; Sarah Archer-Evans; Young Moo Lee; Tony James Lough; William J. Lucas
Systemic translocation of RNA exerts non-cell-autonomous control over plant development and defense. Long-distance delivery of mRNA has been proven, but transport of small interfering RNA and microRNA remains to be demonstrated. Analyses performed on phloem sap collected from a range of plants identified populations of small RNA species. The dynamic nature of this population was reflected in its response to growth conditions and viral infection. The authenticity of these phloem small RNA molecules was confirmed by bioinformatic analysis; potential targets for a set of phloem small RNA species were identified. Heterografting studies, using spontaneously silencing coat protein (CP) plant lines, also established that transgene-derived siRNA move in the long-distance phloem and initiate CP gene silencing in the scion. Biochemical analysis of pumpkin (Cucurbita maxima) phloem sap led to the characterization of C. maxima Phloem SMALL RNA BINDING PROTEIN1 (CmPSRP1), a unique component of the protein machinery probably involved in small RNA trafficking. Equivalently sized small RNA binding proteins were detected in phloem sap from cucumber (Cucumis sativus) and lupin (Lupinus albus). PSRP1 binds selectively to 25-nucleotide single-stranded RNA species. Microinjection studies provided direct evidence that PSRP1 could mediate the cell-to-cell trafficking of 25-nucleotide single-stranded, but not double-stranded, RNA molecules. The potential role played by PSRP1 in long-distance transmission of silencing signals is discussed with respect to the pathways and mechanisms used by plants to exert systemic control over developmental and physiological processes.
The Plant Cell | 2007
Ming-Kuem Lin; Helene Belanger; Young Jin Lee; Erika Varkonyi-Gasic; Ken Ichiro Taoka; Eriko Miura; Beatriz Xoconostle-Cázares; Karla Gendler; Richard A. Jorgensen; Brett S. Phinney; Tony James Lough; William J. Lucas
Cucurbita moschata, a cucurbit species responsive to inductive short-day (SD) photoperiods, and Zucchini yellow mosaic virus (ZYMV) were used to test whether long-distance movement of FLOWERING LOCUS T (FT) mRNA or FT is required for floral induction. Ectopic expression of FT by ZYMV was highly effective in mediating floral induction of long-day (LD)–treated plants. Moreover, the infection zone of ZYMV was far removed from floral meristems, suggesting that FT transcripts do not function as the florigenic signal in this system. Heterografting demonstrated efficient transmission of a florigenic signal from flowering Cucurbita maxima stocks to LD-grown C. moschata scions. Real-time RT-PCR performed on phloem sap collected from C. maxima stocks detected no FT transcripts, whereas mass spectrometry of phloem sap proteins revealed the presence of Cm-FTL1 and Cm-FTL2. Importantly, studies on LD- and SD-treated C. moschata plants established that Cmo-FTL1 and Cmo-FTL2 are regulated by photoperiod at the level of movement into the phloem and not by transcription. Finally, mass spectrometry of florally induced heterografted C. moschata scions revealed that C. maxima FT, but not FT mRNA, crossed the graft union in the phloem translocation stream. Collectively, these studies are consistent with FT functioning as a component of the florigenic signaling system in the cucurbits.
Molecular & Cellular Proteomics | 2009
Ming-Kuem Lin; Young Jin Lee; Tony James Lough; Brett S. Phinney; William J. Lucas
Increasing evidence suggests that proteins present in the angiosperm sieve tube system play an important role in the long distance signaling system of plants. To identify the nature of these putatively non-cell-autonomous proteins, we adopted a large scale proteomics approach to analyze pumpkin phloem exudates. Phloem proteins were fractionated by fast protein liquid chromatography using both anion and cation exchange columns and then either in-solution or in-gel digested following further separation by SDS-PAGE. A total of 345 LC-MS/MS data sets were analyzed using a combination of Mascot and X!Tandem against the NCBI non-redundant green plant database and an extensive Cucurbit maxima expressed sequence tag database. In this analysis, 1,209 different consensi were obtained of which 1,121 could be annotated from GenBank™ and BLAST search analyses against three plant species, Arabidopsis thaliana, rice (Oryza sativa), and poplar (Populus trichocarpa). Gene ontology (GO) enrichment analyses identified sets of phloem proteins that function in RNA binding, mRNA translation, ubiquitin-mediated proteolysis, and macromolecular and vesicle trafficking. Our findings indicate that protein synthesis and turnover, processes that were thought to be absent in enucleate sieve elements, likely occur within the angiosperm phloem translocation stream. In addition, our GO analysis identified a set of phloem proteins that are associated with the GO term “embryonic development ending in seed dormancy”; this finding raises the intriguing question as to whether the phloem may exert some level of control over seed development. The universal significance of the phloem proteome was highlighted by conservation of the phloem proteome in species as diverse as monocots (rice), eudicots (Arabidopsis and pumpkin), and trees (poplar). These results are discussed from the perspective of the role played by the phloem proteome as an integral component of the whole plant communication system.
The Plant Cell | 2002
Toshi Foster; Tony James Lough; Sarah Jane Emerson; Robyn H. Lee; John L. Bowman; Richard L.S. Forster; William J. Lucas
Phloem-mobile endogenous RNA is trafficked selectively into the shoot apex. In contrast, most viruses and long-distance post-transcriptional gene silencing (PTGS) signals are excluded from the shoot apex. These observations suggest the operation of an underlying regulatory mechanism. To examine this possibility, a potexvirus movement protein, known to modify cell-to-cell trafficking and PTGS, was expressed ectopically in transgenic plants. These plants were found to be compromised in their capacity to exclude both viral RNA and silencing signals from the shoot apex. The transgenic plants also displayed various degrees of abnormal leaf polarity depending on transgene expression level. Normal patterns of organ development were restored by either virus- or Agrobacterium tumefaciens–mediated induction of PTGS. This revealed the presence of an RNA signal surveillance system that acts to allow the selective entry of RNA into the shoot apex. We propose that this surveillance system regulates signaling and protects the shoot apex, in particular the cells that give rise to reproductive structures, from viral invasion.
Molecular Plant-microbe Interactions | 1998
Tony James Lough; Khalid Shash; Beatriz Xoconostle-Cázares; Katrina R. Hofstra; David L. Beck; Ezequiel Balmori; Richard L. Forster; William J. Lucas
The triple gene block (TGB; consisting of proteins TGB1–3) and coat protein (CP) of white clover mosaic potexvirus (WClMV) are required for cell-to-cell movement of viral RNA. Cell-to-cell spread of WClMV mutants in which the TGB open reading frames had been mutated was rescued in transgenic plants expressing specific TGB proteins (TGBPs). This indicated that there are no requirements for the synthesis in cis of viral TGBPs. These transgenic plants provided an experimental framework to explore the roles performed by the TGBPs and CP in cell-to-cell movement of WClMV RNA. Microinjection experiments established that TGB1 functions as the WClMV cell-to-cell movement protein (MP). Furthermore, combined microinjection and dual-channel confocal laser scanning microscopy provided direct evidence that infectious transcripts of WClMV move cell to cell as a ribonucleoprotein complex, consisting of single-stranded RNA, TGB1, and CP. Movement of this ribonucleoprotein complex displayed an absolute requirement for the...
The Plant Cell | 2009
Byung-Kook Ham; Jeri L. Brandom; Beatriz Xoconostle-Cázares; Vanessa Ringgold; Tony James Lough; William J. Lucas
RNA binding proteins (RBPs) are integral components of ribonucleoprotein (RNP) complexes and play a central role in RNA processing. In plants, some RBPs function in a non-cell-autonomous manner. The angiosperm phloem translocation stream contains a unique population of RBPs, but little is known regarding the nature of the proteins and mRNA species that constitute phloem-mobile RNP complexes. Here, we identified and characterized a 50-kD pumpkin (Cucurbita maxima cv Big Max) phloem RNA binding protein (RBP50) that is evolutionarily related to animal polypyrimidine tract binding proteins. In situ hybridization studies indicated a high level of RBP50 transcripts in companion cells, while immunolocalization experiments detected RBP50 in both companion cells and sieve elements. A comparison of the levels of RBP50 present in vascular bundles and phloem sap indicated that this protein is highly enriched in the phloem sap. Heterografting experiments confirmed that RBP50 is translocated from source to sink tissues. Collectively, these findings established that RBP50 functions as a non-cell-autonomous RBP. Protein overlay, coimmunoprecipitation, and cross-linking experiments identified the phloem proteins and mRNA species that constitute RBP50-based RNP complexes. Gel mobility-shift assays demonstrated that specificity, with respect to the bound mRNA, is established by the polypyrimidine tract binding motifs within such transcripts. We present a model for RBP50-based RNP complexes within the pumpkin phloem translocation stream.
Molecular Plant-microbe Interactions | 2000
Tony James Lough; Natalie E. Netzler; Sarah Jane Emerson; Paul Sutherland; Fiona Carr; David L. Beck; William J. Lucas; Richard L. Forster
The triple gene block proteins (TGBp1-3) and coat protein (CP) of potexviruses are required for cell-to-cell movement. Separate models have been proposed for intercellular movement of two of these viruses, transport of intact virions, or a ribonucleoprotein complex (RNP) comprising genomic RNA, TGBp1, and the CP. At issue therefore, is the form(s) in which RNA transport occurs and the roles of TGBp1-3 and the CP in movement. Evidence is presented that, based on microprojectile bombardment studies, TGBp1 and the CP, but not TGBp2 or TGBp3, are co-translocated between cells with viral RNA. In addition, cell-to-cell movement and encapsidation functions of the CP were shown to be separable, and the rate-limiting factor of potexvirus movement was shown not to be virion accumulation, but rather, the presence of TGBp1-3 and the CP in the infected cell. These findings are consistent with a common mode of transport for potexviruses, involving a non-virion RNP, and show that TGBp1 is the movement protein, whereas TGBp2 and TGBp3 are either involved in intracellular transport or interact with the cellular machinery/docking sites at the plasmodesmata.
Annual Review of Plant Biology | 2006
Tony James Lough; William J. Lucas
Archive | 2007
Helene Belanger; Ross L. Prestidge; Tony James Lough; James D. Watson; Jia-Long Yao
Virology | 2006
Tony James Lough; Robyn H. Lee; Sarah Jane Emerson; Richard L.S. Forster; William J. Lucas