C. A. Brock
Earth System Research Laboratory
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by C. A. Brock.
Journal of Geophysical Research | 2006
Amy P. Sullivan; Richard E. Peltier; C. A. Brock; J. A. de Gouw; John S. Holloway; Carsten Warneke; A. G. Wollny; Rodney J. Weber
[1] A particle-into-liquid sampler (PILS) was coupled to a total organic carbon (TOC) analyzer for 3 s integrated measurements of water-soluble organic carbon (WSOC) in PM1 ambient particles. The components of the instrument are described in detail. The PILS-TOC was deployed on the NOAA WP-3D aircraft during the NEAQS/ITCT 2004 program to investigate WSOC sources over the northeastern United States and Canada. Two main sources were identified: biomass burning emissions from fires in Alaska and northwestern Canada and emissions emanating from urban centers. Biomass burning WSOC was correlated with carbon monoxide (CO) and acetonitrile (r 2 > 0.88). These plumes were intercepted in layers at altitudes between 3 and 4 km and contained the highest fine particle volume and WSOC concentrations of the mission. Apart from the biomass burning influence, the lowest WSOC concentrations were recorded in rural air masses that included regions of significant biogenic emissions. Highest concentrations were at low altitudes in distinct plumes from urban centers. WSOC and CO were highly correlated (r 2 > 0.78) in these urban plumes. The ratio of the enhancement in WSOC relative to CO enhancement was found to be low (� 3 mg C/m 3 /ppmv) in plumes that had been in transit for a short time, and increased with plume age, but appeared to level off at � 32 ± 4 mg C/m 3 /ppmv after � 1 day of transport from the sources. The results suggest that the production of WSOC in fine particles depends on compounds coemitted with CO and that this process is rapid with a time constant of � 1 day.
Journal of Geophysical Research | 2008
J. A. de Gouw; C. A. Brock; E. Atlas; T. S. Bates; F. C. Fehsenfeld; Paul D. Goldan; John S. Holloway; William C. Kuster; Brendan Matthew; Ann M. Middlebrook; Timothy B. Onasch; Richard E. Peltier; Patricia K. Quinn; Christoph J. Senff; Andreas Stohl; Amy P. Sullivan; M. Trainer; Carsten Warneke; Rodney J. Weber; Eric J. Williams
[1] Ship and aircraft measurements of aerosol organic matter (OM) and water-soluble organic carbon (WSOC) were made in fresh and aged pollution plumes from major urban areas in the northeastern United States in the framework of the 2004 International Consortium for Atmospheric Research on Transport and Transformation (ICARTT) study. A large part of the variability in the data was quantitatively described by a simple parameterization from a previous study that uses measured mixing ratios of CO and either the transport age or the photochemical age of the sampled air masses. The results suggest that OM was mostly due to secondary formation from anthropogenic volatile organic compound (VOC) precursors in urban plumes. Approximately 37% of the secondary formation can be accounted for by the removal of aromatic precursors using newly published particulate mass yields for low-NOx conditions, which are significantly higher than previous results. Of the secondary formation, 63% remains unexplained and is possibly due to semivolatile precursors that are not measurable by standard gas chromatographic methods. The observed secondary OM in urban plumes may account for 35% of the total source of OM in the United States and 8.5% of the global OM source. OM is an important factor in climate and air quality issues, but its sources and formation mechanisms remain poorly quantified.
Geophysical Research Letters | 2012
Roya Bahreini; Ann M. Middlebrook; J. A. de Gouw; Carsten Warneke; M. Trainer; C. A. Brock; Harald Stark; Steven S. Brown; William P. Dubé; J. B. Gilman; K. Hall; John S. Holloway; William C. Kuster; A. E. Perring; André S. H. Prévôt; Joshua P. Schwarz; J. R. Spackman; Sönke Szidat; N. L. Wagner; Rodney J. Weber; P. Zotter; D. D. Parrish
Although laboratory experiments have shown that organic compounds in both gasoline fuel and diesel engine exhaust can form secondary organic aerosol (SOA), the fractional contribution from gasoline and diesel exhaust emissions to ambient SOA in urban environments is poorly known. Here we use airborne and ground-based measurements of organic aerosol (OA) in the Los Angeles (LA) Basin, California made during May and June 2010 to assess the amount of SOA formed from diesel emissions. Diesel emissions in the LA Basin vary between weekdays and weekends, with 54% lower diesel emissions on weekends. Despite this difference in source contributions, in air masses with similar degrees of photochemical processing, formation of OA is the same on weekends and weekdays, within the measurement uncertainties. This result indicates that the contribution from diesel emissions to SOA formation is zero within our uncertainties. Therefore, substantial reductions of SOA mass on local to global scales will be achieved by reducing gasoline vehicle emissions.
Journal of Geophysical Research | 2000
C. A. Brock; Franz Schröder; Bernd Kärcher; Andreas Petzold; Reinhold Busen; Markus Fiebig
Fast-response measurements of particle size distributions were made for the first time in the near-field plume of a Boeing 737–300 aircraft burning fuel with fuel sulfur (S) contents (FSCs) of 56 and 2.6 ppmm, as well as in fresh and dissipating contrails from the same aircraft, using nine particle counters operating in parallel. Nonsoot particles were present in high concentrations, with number maxima at diameters ≤3nm. From these and ancillary measurements we determined the apparent emission index, EI*, or amount produced per kilogram of fuel burned, for particle nuipber, surface, and volume, and the value of η*, the apparent fraction of fuel S found in the particulate phase in the plume assuming the particles were composed of sulfuric acid and water. All of these parameters were functions of the age of the plume since emission, FSC, and presence or absence of contrail. The measurements support the use of values of η* of <10% in numerical models of the effects of the current aircraft fleet on the atmosphere, suggest that non-S species become important contributors to particulate mass at very low FSCs, and place significant constraints on numerical models of plume microphysical processes.
Science | 2011
J. A. de Gouw; Ann M. Middlebrook; Carsten Warneke; Ravan Ahmadov; E. Atlas; Roya Bahreini; D. R. Blake; C. A. Brock; J. Brioude; D. W. Fahey; F. C. Fehsenfeld; John S. Holloway; M. Le Hénaff; R. A. Lueb; S. A. McKeen; J. F. Meagher; D. M. Murphy; Claire B. Paris; D. D. Parrish; A. E. Perring; Ilana B. Pollack; A. R. Ravishankara; Allen L. Robinson; T. B. Ryerson; Joshua P. Schwarz; J. R. Spackman; Ashwanth Srinivasan; Leon Adam Watts
Organic compounds of intermediate volatility play an important role in the formation of secondary organic aerosols. A large fraction of atmospheric aerosols are derived from organic compounds with various volatilities. A National Oceanic and Atmospheric Administration (NOAA) WP-3D research aircraft made airborne measurements of the gaseous and aerosol composition of air over the Deepwater Horizon (DWH) oil spill in the Gulf of Mexico that occurred from April to August 2010. A narrow plume of hydrocarbons was observed downwind of DWH that is attributed to the evaporation of fresh oil on the sea surface. A much wider plume with high concentrations of organic aerosol (>25 micrograms per cubic meter) was attributed to the formation of secondary organic aerosol (SOA) from unmeasured, less volatile hydrocarbons that were emitted from a wider area around DWH. These observations provide direct and compelling evidence for the importance of formation of SOA from less volatile hydrocarbons.
Journal of Geophysical Research | 1995
D. W. Fahey; E. R. Keim; E. L. Woodbridge; R. S. Gao; K. A. Boering; Bruce C. Daube; S. C. Wofsy; R. P. Lohmann; E. J. Hintsa; Andrew E. Dessler; C. R. Webster; R. D. May; C. A. Brock; J. C. Wilson; R. C. Miake-Lye; R. C. Brown; J. M. Rodriguez; M. Loewenstein; M. H. Proffitt; R. M. Stimpfle; S. W. Bowen; K. R. Chan
Instrumentation on the NASA ER-2 high-altitude aircraft has been used to observe engine exhaust from the same aircraft while operating in the lower stratosphere. Encounters with the exhaust plume occurred approximately 10 min after emission with spatial scales near 2 km and durations of up to 10 s. Measurements include total reactive nitrogen, NO(y), the component species NO and NO2, CO2, H2O, CO, N2O, condensation nuclei, and meteorological parameters. The integrated amounts of CO2 and H2O during the encounters are consistent with the stoichiometry of fuel combustion (1:1 molar). Emission indices (EI) for NO(x) (= NO + NO2), CO, and N2O are calculated using simultaneous measurements of CO2. EI values for NO(x) near 4 g/(kg fuel) are in good agreement with values scaled from limited ground-based tests of the ER-2 engine. Non-NO(x) species comprise less than about 20% of emitted reactive nitrogen, consistent with model evaluations. In addition to demonstrating the feasibility of aircraft plume detection, these results increase confidence in the projection of emissions from current and proposed supersonic aircraft fleets and hence in the assessment of potential long-term changes in the atmosphere.
Journal of Geophysical Research | 1999
Andreas Petzold; A. Döpelheuer; C. A. Brock; Franz Schröder
The exhaust aerosol of two aircraft at cruise was extensively characterized in the size range from 0.003 to 2 μm for plume ages ≤2 s. The black carbon (BC) exhaust aerosol of an older technology engine (Rolls-Royce/Snecma M45H Mk501) consisted of a primary BC mode with a modal diameter of 0.035 μm and a mode of coagulated BC particles with a peak near 0.15–0.16 μm in diameter. The total number density at the nozzle exit plane was 3×107 cm−3. In contrast, a modern technology engine (CFM International CFM56-3B1) emitted far smaller BC particles with a primary mode at 0.025 μm and a coagulated mode at 0.15 μm, as well as fewer particles by number with a concentration of 9×106 cm−3. The single-scattering albedo of the jet exhaust aerosol was 0.035 ± 0.02 inside the plume, indicating a dominant contribution of ultrafine (D<0.1 μm) BC particles to light extinction. Black carbon number emission indices EI(N) varied from 3.5×1014 (CFM56-3B1) to 1.7×1015 kg−1 (M45H Mk501) with corresponding mass emission indices EI(BC) of 0.011 and 0.1 g kg−1. Previously reported corresponding values for a CF6-80C2A2 engine were 6×1014 kg−1 and 0.023 g kg−1, respectively. A comparison between EI(BC) values calculated by a new correlation method and measured data shows an excellent agreement, with deviations <10% at cruise conditions. By extending the EI(BC) calculation method to a globally operating aircraft fleet, a fleet-averaged emission index EI(BC) = 0.038 g kg−1 is calculated.
Aerosol Science and Technology | 2008
R. Bahreini; E. J. Dunlea; Brendan Matthew; Craig Simons; Kenneth S. Docherty; P. F. DeCarlo; Jose L. Jimenez; C. A. Brock; Ann M. Middlebrook
Two pressure-controlled inlets (PCI) have been designed and integrated into the Aerodyne Aerosol Mass Spectrometer (AMS) inlet system containing an aerodynamic aerosol lens system for use in airborne measurements. Laboratory experiments show that size calibration and mass flow rate into the AMS are not affected by changes in upstream pressure (P 0 ) of the PCI as long as the pressure within the PCI chamber (P PCI ) is controlled to values lower than P 0 . Numerous experiments were conducted at different P PCI , P 0 , and AMS lens pressures (P Lens ) to determine particle transmission efficiency into the AMS. Based on the results, optimum operating conditions were selected which allow for constant pressure sampling with close to 100% transmission efficiency of particles in the size range of ∼ 100–700 nm vacuum aerodynamic diameter (d va ) at altitudes up to ∼ 6.5 km. Data from an airborne field study are presented for illustration.
Geophysical Research Letters | 2015
Rebecca A. Washenfelder; A. R. Attwood; C. A. Brock; Hongyu Guo; Lu Xu; Rodney J. Weber; Nga L. Ng; Hannah M. Allen; Benjamin Ayres; Karsten Baumann; R. C. Cohen; Danielle C. Draper; Kaitlin C. Duffey; Eric S. Edgerton; Juliane L. Fry; Weiwei Hu; J. L. Jimenez; Brett B. Palm; Paul S. Romer; Elizabeth A. Stone; P. J. Wooldridge; Steven S. Brown
Brown carbon aerosol consists of light-absorbing organic particulate matter with wavelength-dependent absorption. Aerosol optical extinction, absorption, size distributions, and chemical composition were measured in rural Alabama during summer 2013. The field site was well located to examine sources of brown carbon aerosol, with influence by high biogenic organic aerosol concentrations, pollution from two nearby cities, and biomass burning aerosol. We report the optical closure between measured dry aerosol extinction at 365 nm and calculated extinction from composition and size distribution, showing agreement within experiment uncertainties. We find that aerosol optical extinction is dominated by scattering, with single-scattering albedo values of 0.94 ± 0.02. Black carbon aerosol accounts for 91 ± 9% of the total carbonaceous aerosol absorption at 365 nm, while organic aerosol accounts for 9 ± 9%. The majority of brown carbon aerosol mass is associated with biomass burning, with smaller contributions from biogenically derived secondary organic aerosol.
Environmental Science & Technology | 2011
D. A. Lack; Christopher D. Cappa; Justin M. Langridge; Roya Bahreini; Gina Buffaloe; C. A. Brock; K. Cerully; D. J. Coffman; Katherine Hayden; John S. Holloway; Paola Massoli; Shao-Meng Li; Robert McLaren; Ann M. Middlebrook; R. H. Moore; Athanasios Nenes; I. Nuaaman; Timothy B. Onasch; J. Peischl; A. E. Perring; Patricia K. Quinn; T. B. Ryerson; Joshua P. Schwartz; Ryan Spackman; Steven C. Wofsy; D. R. Worsnop; B. Xiang; Eric Williams
Atmospheric emissions of gas and particulate matter from a large ocean-going container vessel were sampled as it slowed and switched from high-sulfur to low-sulfur fuel as it transited into regulated coastal waters of California. Reduction in emission factors (EFs) of sulfur dioxide (SO₂), particulate matter, particulate sulfate and cloud condensation nuclei were substantial (≥ 90%). EFs for particulate organic matter decreased by 70%. Black carbon (BC) EFs were reduced by 41%. When the measured emission reductions, brought about by compliance with the California fuel quality regulation and participation in the vessel speed reduction (VSR) program, are placed in a broader context, warming from reductions in the indirect effect of SO₄ would dominate any radiative changes due to the emissions changes. Within regulated waters absolute emission reductions exceed 88% for almost all measured gas and particle phase species. The analysis presented provides direct estimations of the emissions reductions that can be realized by California fuel quality regulation and VSR program, in addition to providing new information relevant to potential health and climate impact of reduced fuel sulfur content, fuel quality and vessel speed reductions.
Collaboration
Dive into the C. A. Brock's collaboration.
Cooperative Institute for Research in Environmental Sciences
View shared research outputsCooperative Institute for Research in Environmental Sciences
View shared research outputsCooperative Institute for Research in Environmental Sciences
View shared research outputsCooperative Institute for Research in Environmental Sciences
View shared research outputsCooperative Institute for Research in Environmental Sciences
View shared research outputs