C. Arcoumanis
City University London
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by C. Arcoumanis.
Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science | 1987
C. Arcoumanis; J. H. Whitelaw
The paper reviews current knowledge of the flow processes within the cylinders of reciprocating engines and examines experimental and calculation techniques used to determine them. Topics requiring further research are identified and discussed.
Journal of Fluid Mechanics | 2008
A. Andriotis; Manolis Gavaises; C. Arcoumanis
Flow visualization as well as three-dimensional cavitating flow simulations have been employed for characterizing the formation of cavitation inside transparent replicas of fuel injector valves used in low-speed two-stroke diesel engines. The designs tested have incorporated five-hole nozzles with cylindrical as well as tapered holes operating at different fixed needle lift positions. High-speed images have revealed the formation of an unsteady vapour structure upstream of the injection holes inside the nozzle volume, which is referred to as ‘string-cavitation’. Computation of the flow distribution and combination with three-dimensional reconstruction of the location of the strings inside the nozzle volume has revealed that strings are found at the core of recirculation zones; they originate either from pre-existing cavitation sites forming at sharp corners inside the nozzle where the pressure falls below the vapour pressure of the flowing liquid, or even from suction of outside air downstream of the hole exit. Processing of the acquired images has allowed estimation of the mean location and probability of appearance of the cavitating strings in the three-dimensional space as a function of needle lift, cavitation and Reynolds number. The frequency of appearance of the strings has been correlated with the Strouhal number of the vortices developing inside the sac volume; the latter has been found to be a function of needle lift and hole shape. The presence of strings has significantly affected the flow conditions at the nozzle exit, influencing the injected spray. The cavitation structures formed inside the injection holes are significantly altered by the presence of cavitation strings and are jointly responsible for up to 10% variation in the instantaneous fuel injection quantity. Extrapolation using model predictions for real-size injectors operating at realistic injection pressures indicates that cavitation strings are expected to appear within the time scales of typical injection events, implying significant hole-to-hole and cycle-to-cycle variations during the corresponding spray development.
Journal of Fluid Mechanics | 2008
E. Giannadakis; Manolis Gavaises; C. Arcoumanis
A computational fluid dynamics cavitation model based on the Eulerian–Lagrangian approach and suitable for hole-type diesel injector nozzles is presented and discussed. The model accounts for a number of primary physical processes pertinent to cavitation bubbles, which are integrated into the stochastic framework of the model. Its predictive capability has been assessed through comparison of the calculated onset and development of cavitation inside diesel nozzle holes against experimental data obtained in real-size and enlarged models of single- and multi-hole nozzles. For the real-size nozzle geometry, high-speed cavitation images obtained under realistic injection pressures are compared against model predictions, whereas for the large-scale nozzle, validation data include images from a charge-coupled device (CCD) camera, computed tomography (CT) measurements of the liquid volume fraction and laser Doppler velocimetry (LDV) measurements of the liquid mean and root mean square (r.m.s.) velocities at different cavitation numbers (CN) and two needle lifts, corresponding to different cavitation regimes inside the injection hole. Overall, and on the basis of this validation exercise, it can be argued that cavitation modelling has reached a stage of maturity, where it can usefully identify many of the cavitation structures present in internal nozzle flows and their dependence on nozzle design and flow conditions.
Journal of Fluids Engineering-transactions of The Asme | 1983
C. Arcoumanis; A. F. Bicen; J. H. Whitelaw
Measurements of the three components of velocity and their corresponding fluctuations have been obtained by laser-Doppler anemometry mainly near TDC of compression in a model IC engine motored at 200 rpm with compression ratio of 6.7. The flow configurations comprised an axisymmetric cylinder head with and without upstream induced swirl and each of a flat piston and two centrally located, cylindrical and re-entrant, bowl-in-piston arrangements. In the absence of swirl and squish, the intake-generated mean motion and turbulence decayed considerably by the end of compression. The two piston-bowl configurations, however, resulted in a compression-induced squish motion with consequent formation of a toroidal vortex occupying the whole bowl space. Interacton of swirl, carried from intake and persisting through compression, with squish generated near TDC profoundly altered the axial flow structure. In the case of the cylindrical bowl, the sense of the vortex was reversed by swirl and, in the reentrant bowl, increased the number of vortices to two. The swirling motion inside the cylindrical bowl was close to solid body rotation while the re-entrant bowl gave rise to more complex flow patterns. Squish, in the presence or absence of swirl, did not augment the turbulent energy inside the cylindrical bowl contrary to the reentrant configuration where turbulence generation was observed.
Experiments in Fluids | 1990
C. Arcoumanis; James J. McGuirk; J. M. L. M. Palma
An experiment was performed to evaluate the characteristics of various fluorescent dyes used as tracers for concentration measurements in water flows, by laser induced fluorescence. Three common fluorescent dyes (fluorescein, rhodamine B and rhodamine 6G) were used, to select the most suitable fluorescent dye and identify its range of linear response. The results showed that, in terms of the stability of the solution, fluorescein is inferior to either rhodamine B or rhodamine 6G and that for concentrations of rhodamine B less than 0.08 mg/1 the response of fluorescent to the incident light is linear.
SAE World Congress & Exhibition | 2007
E. Giannadakis; D. Papoulias; Manolis Gavaises; C. Arcoumanis; Celia Soteriou; W. Tang
ABSTRACT The predictive capability of Lagrangian and Eulerian multi-dimensional computational fluid dynamics models accounting for the onset and development of cavitation inside Diesel nozzle holes is assessed against experimental data. These include cavitation images available from a real-size six-hole mini-sac nozzle incorporating a transparent window as well as high-speed/CCD images and LDV measurements of the liquid velocity inside an identical large-scale fully transparent nozzle replica. Results are available for different cavitation numbers, which correspond to different cavitation regimes forming inside the injection hole. Discharge coefficient measurements for various real-size nozzles operating under realistic injection pressures are also compared and match well with models’ predictions. The calculations performed have indicated that the two Eulerian models predict a large void zone inside the injection hole and fail to capture the transition from incipient to fully developed cavitation, while the Lagrangian model predicts a more diffused and gradual vapour distribution in agreement with the experimental data. However, all models have predicted similarly the velocity increase inside the injection hole caused by the presence of vapour, and a similar reduction in the nozzle discharge coefficient. Liquid turbulence was significantly underestimated by the Eulerian models in the cavitation zone showing decreasing trends in contradiction with experimental observations while this was better simulated by the Lagrangian model. Following the comparison with experiment, the effect of cavitation model assumptions, numerical implementation, discretisation scheme, model of turbulence grid resolution and cavitation physical sub-models on the predicted results on the nozzle discharge coefficient and hole exit %blockage are evaluated. The latter includes the bubble break-up and its internal initialisation pressure, the influence of the proximity of solid boundaries on the Rayleigh-Plesset equation and the percentage nuclei volume present in the liquid. Overall, it has been found that cavitation modelling has matured to the level where it can usefully identify many of the effects of cavitation on nozzle performance, and so significantly contribute to nozzle design and optimisation.
Archive | 2009
C. Arcoumanis; Take Kamimoto
Spark Ignition and Combustion in Four-Stroke Gasoline Engines.- Flow, Mixture Preparation and Combustion in Direct-Injection Two-Stroke Gasoline Engines.- Flow, Mixture Preparation and Combustion in Four-Stroke Direct-Injection Gasoline Engines.- Turbulent Flow Structure in Direct-Injection, Swirl-Supported Diesel Engines.- Recent Developments on Diesel Fuel Jets Under Quiescent Conditions.- Conventional Diesel Combustion.- Advanced Diesel Combustion.- Fuel Effects on Engine Combustion and Emissions.
International Journal of Engine Research | 2006
Nicholas Mitroglou; J. M. Nouri; Manolis Gavaises; C. Arcoumanis
Abstract The sprays from a high-pressure multi-hole nozzle injected into a constant-volume chamber have been visualized and quantified in terms of droplet velocity and diameter with a two-component phase Doppler anemometry (PDA) system at injection pressures up to 200 bar and chamber pressures varying from atmospheric to 12 bar. The flow characteristics within the injection system were quantified by means of a fuel injection equipment (FIE) one-dimensional model, providing the injection rate and the injection velocity in the presence of hole cavitation, by an in-house three-dimensional computational fluid dynamics (CFD) model providing the detailed flow distribution for various combinations of nozzle hole configurations, and by a fuel atomization model giving estimates of the droplet size very near to the nozzle exit. The overall spray angle relative to the axis of the injector was found to be almost independent of injection and chamber pressure, a significant advantage relative to swirl pressure atomizers. Temporal droplet velocities were found to increase sharply at the start of injection and then to remain unchanged during the main part of injection, before decreasing rapidly towards the end of injection. The spatial droplet velocity profiles were jet-like at all axial locations, with the local velocity maximum found at the centre of the jet. Within the measured range, the effect of injection pressure on droplet size was rather small while the increase in chamber pressure from atmospheric to 12 bar resulted in much smaller droplet velocities, by up to four-fold, and larger droplet sizes by up to 40 per cent.
International Journal of Engine Research | 2000
M. R. Gold; C. Arcoumanis; J. H. Whitelaw; J Gaade; S Wallace
Abstract The mixture formation in a single-cylinder, optical port-injected gasoline engine was investigated for both closed- and open-valve injection strategies with a combination of phase Doppler anemometry, laser-induced fluorescence and Mie scattering and correlated with combustion development and exhaust emissions. Detailed crank angle resolved data of the flow and mixture distribution during induction and compression have revealed the advantages of early open-valve injection, in terms of extending the lean limit and maintaining satisfactory engine performance and HC/NOx emissions, achieved through charge stratification in the vicinity of the spark plug at the time of ignition.
Experiments in Fluids | 1993
C. Arcoumanis; J-C. Chang
An experimental investigation was performed to determine the heat-transfer distribution in the vicinity of a transient diesel spray impinging on a heated flat plate. The spray prior to impingement was characterised in terms of simultaneous droplet sizes and velocities by phase-Doppler anemometry while during its impingement on the plate, which was heated at temperatures between 150–205°C, the instantaneous surface temperature and associated rates of wall heat transfer were monitored by fast response thermocouples. The parameters examined in this work included the distance between the nozzle and the wall surface, the radial distance from the impingement point, the injection frequency, the injected volume and the pre-impingement wall temperature. The results showed that the wall heat transfer rates are dependent on the spray characteristics prior to impingement; the higher the “velocity of arrival” of the droplet is, the higher the heat transfer. A correlation was thus developed for the instantaneous and spatially-resolved spray/wall heat transfer based on experimentally-determined Nusselt, Reynolds, Prandtl and Weber numbers over a wide range of test conditions.