C. B. Rasrendra
Bandung Institute of Technology
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by C. B. Rasrendra.
Chemical Reviews | 2013
Robert-Jan van Putten; Jan C. van der Waal; Ed de Jong; C. B. Rasrendra; Hero J. Heeres; Johannes G. de Vries
Renewable Resources Robert-Jan van Putten,†,‡ Jan C. van der Waal,† Ed de Jong,*,† Carolus B. Rasrendra,‡,⊥ Hero J. Heeres,*,‡ and Johannes G. de Vries* †Avantium Chemicals, Zekeringstraat 29, 1014 BV Amsterdam, the Netherlands ‡Department of Chemical Engineering, University of Groningen, Nijenborgh 4, 9747 AG Groningen, the Netherlands Stratingh Institute for Chemistry, University of Groningen, Nijenborgh 4, 9747 AG Groningen, the Netherlands DSM Innovative Synthesis BV, P.O. Box 18, 6160 MD Geleen, the Netherlands Department of Chemical Engineering, Institut Teknologi Bandung, Ganesha 10, Bandung 40132, Indonesia
Chemsuschem | 2013
Ilona van Zandvoort; Yuehu Wang; C. B. Rasrendra; Ernst R. H. van Eck; Pieter C. A. Bruijnincx; Hero J. Heeres; Bert M. Weckhuysen
Neither the routes through which humin byproducts are formed, nor their molecular structure have yet been unequivocally established. A better understanding of the formation and physicochemical properties of humins, however, would aid in making biomass conversion processes more efficient. Here, an extensive multiple-technique-based study of the formation, molecular structure, and morphology of humins is presented as a function of sugar feed, the presence of additives (e.g., 1,2,4-trihydroxybenzene), and the applied processing conditions. Elemental analyses indicate that humins are formed through a dehydration pathway, with humin formation and levulinic acid yields strongly depending on the processing parameters. The addition of implied intermediates to the feedstocks showed that furan and phenol compounds formed during the acid-catalyzed dehydration of sugars are indeed included in the humin structure. IR spectra, sheared sum projections of solid-state 2DPASS (13) C NMR spectra, and pyrolysis GC-MS data indicate that humins consist of a furan-rich polymer network containing different oxygen functional groups. The structure is furthermore found to strongly depend on the type of feedstock. A model for the molecular structure of humins is proposed based on the data presented.
Chemsuschem | 2011
C. B. Rasrendra; Boy A. Fachri; I. Gusti B. N. Makertihartha; Sanggono Adisasmito; Hero J. Heeres
We herein present a study on the application of homogeneous catalysts in the form of metal salts on the conversion of trioses, such as dihydroxyacetone (DHA), and glyceraldehyde (GLY) to lactic acid (LA) in water. A wide range of metal salts (26 in total) were examined. Al(III) salts were identified as the most promising and essentially quantitative LA yields (>90 mol%) were obtained at 140 °C and a reaction time of 90 min. A reaction pathway is proposed and a kinetic model using the power law approach was developed for the conversion of DHA to LA with pyruvaldehyde (PRV) as the intermediate. Good agreement between experimental data and the model was obtained. Model predictions, supported by experiments, indicate that a high yield of LA is favoured in dilute solutions of DHA (0.1 M) at elevated temperatures (180 °C) and reaction times less than 10 min.
Industrial & Engineering Chemistry Research | 2017
Jenny N. M. Tan-Soetedjo; Henk H. van de Bovenkamp; Ria M. Abdilla; C. B. Rasrendra; Jacob van Ginkel; Hero J. Heeres
We here report experimental and kinetic modeling studies on the conversion of sucrose to levulinic acid (LA) and 5-hydroxymethylfurfural (HMF) in water using sulfuric acid as the catalyst. Both compounds are versatile building blocks for the synthesis of various biobased (bulk) chemicals. A total of 24 experiments were performed in a temperature window of 80–180 °C, a sulfuric acid concentration between 0.005 and 0.5 M, and an initial sucrose concentration between 0.05 and 0.5 M. Glucose, fructose, and HMF were detected as the intermediate products. The maximum LA yield was 61 mol %, obtained at 160 °C, an initial sucrose concentration of 0.05 M, and an acid concentration of 0.2 M. The maximum HMF yield (22 mol %) was found for an acid concentration of 0.05 M, an initial sucrose concentration of 0.05 M, and a temperature of 140 °C. The experimental data were modeled using a number of possible reaction networks. The best model was obtained when using a first order approach in substrates (except for the reversion of glucose) and agreement between experiment and model was satisfactorily. The implication of the model regarding batch optimization is also discussed.
International journal of ambient energy | 2018
Dwiwahju Sasongko; Novan Bayu Nugraha; C. B. Rasrendra; Antonius Indarto
ABSTRACT Direct utilisation of biomass for energy application is less profound due to the problems of low calorific value, high water content, and low grindability of biomass. For this reason, pre-heating treatment, sometimes called torrefaction, is necessary to improve the physical properties of biomass similar to ‘coal-like’ material. Unfortunately, only few comprehensive but simple theoretical models focused on hard-wood biomass were available to describe the torrefaction process. In this discussion, a simple proposed torrefaction model was developed and reported. The model has ability to estimate the yield of product mass and energy after the torrefaction process and determine the optimum conditions.
International journal of ambient energy | 2018
Dwiwahju Sasongko; C. B. Rasrendra; Antonius Indarto
ABSTRACT Devolatilisation is the release of volatile compounds from coal matrix by thermal decomposition. During coal devolatilisation, fragmentation could occur due to pressure build-up of accumulated volatiles. A fragmentation model is necessary to ensure the safe operation of coal combustion and optimum process condition. In this study, the refinement of fragmentation model of coal devolatilisation was done. In order to obtain a comprehensive model, a fluidised bed combustion experiment was conducted using two Indonesian coals (Musi Banyuasin and Berau) and the results were then compared with the model simulation. Using a coal diameter of 0.8–17 mm at a combustion temperature of 850°C, it shows that the fragmentation probability and number of fragments could be affected by the coal particle diameter, convective pore diameter, and porosity. Predictions made by the developed model were close to the experimental fragmentation data, with an error range of less than 5.1%.
Industrial & Engineering Chemistry Research | 2018
Ria M. Abdilla; C. B. Rasrendra; Hero J. Heeres
Fast pyrolysis is as a promising and versatile technology to depolymerize and concentrate sugars from lignocellulosic biomass. The pyrolysis liquids produced contain considerable amounts of levoglucosan (1,6-anhydro-β-d-glucopyranose), which is an interesting source for glucose (GLC). Here, we report a kinetic study on the conversion of levoglucosan (LG) to GLC in water using sulfuric and acetic acid as the catalysts under a wide range of conditions in a batch setup. The effects of the initial LG loading (0.1–1 M), sulfuric and acetic acid concentrations (0.05–0.5 M and 0.5–1 M, respectively), and reaction temperatures (80–200 °C) were determined. Highest GLC yields were obtained using sulfuric acid (98 mol %), whereas the yields were lower for acetic acid (maximum 90 mol %) due to the formation of byproducts such as insoluble polymers (humins). The experimental data were modeled using MATLAB software, and relevant kinetic parameters were determined. Good agreement between experimental and model was obtained when assuming that the reaction is first order with respect to LG. The activation energies were 123.4 kJ mol–1 and 120.9 kJ mol–1 for sulfuric and acetic acid, respectively.
Green Chemistry | 2009
Hans Heeres; Ratna Handana; Dai Chunai; C. B. Rasrendra; B. Girisuta; Hero J. Heeres
Topics in Catalysis | 2010
C. B. Rasrendra; I. G. B. N. Makertihartha; S. Adisasmito; Hero J. Heeres
Environmental Progress | 2009
J. Wildschut; J. Arentz; C. B. Rasrendra; Robbie H. Venderbosch; Hero Heeres